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Abstract

Implementing Opt-in, Residential, Dynamic Electricity Pricing: Insights from

Economics and Psychology

by

Robert James Letzler

Doctor of Philosophy in Public Policy

University of California, Berkeley

Professor Lee S. Friedman, Chair

The Impacts of Residential Critical Peak Pricing: Evidence from California’s

Statewide Pricing Pilot

California’s Statewide Pricing Pilot explored the impact of Critical Peak Electricity

Pricing (CPP) for residential customers. These customers were socioeconomically diverse

and lived in diverse climate zones. This paper takes a flexible, difference in difference

approach to estimating the impacts of the statewide pricing pilot and provides evidence

about 1) the kinds of customers and situations in which CPP is likely to generate the

greatest response and 2) how CPP will affect different subgroups of the population. It

finds that dynamic pricing had larger absolute kilowatt load impacts on hotter days and

on larger customers. It estimates that the benefits of dynamic pricing range from zero in

cooler climates on cooler days to .3 (.4) kW every hour for increased afternoon (“critical

peak”) prices on the hottest days in hot climates. A program designed to address extreme

electrical demand on hot summer days worked best in regions that were hot enough that

most customers had air conditioning and in conditions that prompted them to use air

conditioning. Targetting extra marketing efforts at the kind of hot-region customers who

reduced electricity use the most when power prices rose is likely to incresae the program’s

benefits.

Applying Psychology to Economic Policy Design: Using Incentive Preserving

Rebates to Increase Acceptance of Critical Peak Electricity Pricing
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This project extends the idea that policy makers should address problems by

improving economic incentives. This project adds that presenting incentives in a way that

reflects how people make decisions can sometimes improve consumers’ responses to the

incentives and policy outcomes. This paper uses behavioral economics to propose ways to

increase electricity policy effectiveness.

The cost of generating power fluctuates enormously from hour to hour but most

customers pay time-invariant prices for power. The mismatch between the fluctuating cost

and the fixed price wastes billions of dollars. Critical Peak Pricing (CPP) reduces this

waste by setting offpeak, peak, and “critical” prices that better reflect the cost of power

during time periods. Customers in CPP pilot programs used less power during high-priced

periods than did customers on traditional, time-invariant rates. CPP customers reported

high satisfaction levels and often saved 10% or more. Yet, roughly 99% of customers reject

opportunities to switch to CPP. The psychology literature documents a set of decision mak-

ing heuristics that people use to choose among options with uncertain payoffs. This paper

describes the evidence that one or more of these heuristics explains customer reluctance to

opt-in to CPP. It then suggests Incentive Preserving Rebates that change the presentation

of CPP to address these heuristics. Incentive Preserving Rebates reframe scarcity “events”

as opportunities to get rebates rather than as periods of extremely high prices. Incen-

tive Preserving Rebates change the presentation, but change neither marginal incentives

nor each customer’s total annual payments. The paper then explores the implications of

Incentive Preserving Rebates for customers who participated in a California pilot program.

Optimal Deployment of a simple menu of Incentive Preserving Rebates for

CPP Rates with Heterogeneous Customers

The previous chapter proposes using Incentive Preserving (IP) Rebates to change

the presentation of critical peak pricing (CPP) in a way that makes it more attractive to

consumers. Adding IP Rebates to critical peak pricing maintains CPP’s marginal incentives

and leaves each customer’s total annual bill the same. IP rebates work by selling each

customer rights that they can either use to buy power at the usual price during a high-

price “event” or to cash in for a rebate. Customers buy their own rights bundled with the

first units of power they buy each month. An IP rebate implementation has to assign each

customer a quantity of rights per event and the amount of power that the rate marks up each

month to pay for these rights. Good choice of quantities make IP rebates more likely to work
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as promised. Simple, effective assignment rules are desirable. This project shows that it is

possible to derive a small, optimized menu of IP rebate offers that assigns existing categories

of customers into low, medium, and high use categories. It shows that these offers work

well for the customers who participated in California’s Statewide Pricing Pilot (SPP). These

offers use existing customer categories. Using three optimal categories far outperforms one-

and two-category offers. Four and five category offers perform modestly better than the

three category offer, but perhaps not enough to justify the added complexity. The three,

four, and five category offers all achieve at least 96% of the benefit level of making one offer

to each of the 16 groups of customers. The optimal three category offer makes consistent

offers to between 75% and 90% of the customers in most groups. An offer is consistent

if the customer gets consistent rebates during each month with an event and consistently

purchases the rights that the rate offers them. A customer gets consistent rebates if the

offer includes enough kWh at the usual price so that the customer gets a (weakly positive)

rebate during each month with an event. The customer makes consistent rights purchases if

the rights come bundled with a number of units of power that is less than the customer uses

each month. This offer performs far better than a single, statewide one-size-fits-all offer

or making one offer for each of the four climate zones. Thus, it is possible to consderably

simplify IP Rebate rates while preserving their performance. Good rates will both require

differentiating among customers by energy consumption level or a good proxy for it. Even

the best rates considered here require accepting that a few customers will not get offers that

are ideal matches for their consumption patterns.

Professor Lee S. Friedman
Dissertation Committee Chair
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Chapter 1

Introduction

Microeconomic principles urge analysts to address market failures and policy fail-

ures that cause goods’ prices to diverge from their marginal, social costs. These failures are

ubiquitous, but some are far more serious than others. Interventions like trucking deregula-

tion and emissions credit trading have been quite effective because they address these poor

incentives. It often takes significant effort to devise policies that fix incentive problems and:

• work with existing institutions that may have to be changed incrementally;

• convert simple principles into approaches that can be implemented by agencies or

firms with limited ability to gather and process information;

• seem attractive to people who are comfortable with the status quo and loss averse,

who use simplified heuristics instead of doing all of the math to assess risky choices,

and who may be concerned about the credibility of new regimes;

• and offer, if not a Pareto improvement, compelling benefits to enough stake holders

to make the change politically feasible.

Public Policy scholarship has long recognized that policies are often made through incre-

mental change. This project contributes to a literature (e.g. Robyn [1987], Hausker [1992,

1986]) that uses economic ideas and careful analysis to guide incremental change. Public

policy scholarship can make useful contributions by identifying classes of problems that

challenge efforts to improve incentives and developing new insights about practical ways to

solve these problems.
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This project draws on scholarship at the intersection of psychology and economics

to explain the difficulty of implementing an economic policy. It is an early project to design

a policy that creates incentives that perform well on conventional microeconomic criteria

and present these incentives to be attractive to customers regardless of whether they use

neo-classical expected utility maximization or heuristics identified by the Judgment and

Decision Making literature. It and similar scholarship may be en route to identifying a new

class of market failures where people make poor choices because the presentation or structure

of a choice leads their decision-making heuristics awry in systematic, predictable ways. Such

a view would urge policy designers to structure incentives, choices, and information flows

in ways that consumers’ decision making heuristics handle well. This approach would have

clear parallels to parts of the marketing literature, but would aspire to create information

flows and choice structures that lead to good customer choices that create efficient exchange

rather than structures that aspire to increase firm profits, potentially at the cost of inducing

customer error.

This project takes on these questions in the context of electricity pricing, and

focuses on the challenges posed for implementation with residential consumers. Most cus-

tomers pay the same price per unit for electric power regardless of when they use it, while the

cost of generation varies enormously over time. The existing time-invariant rates squander

an opportunity to use prices that reflect marginal costs to manage demand for scarce, ex-

pensive resources. Existing scholarship shows that charging the marginal cost of power each

hour could achieve social savings on the order of 5-10 % of the cost of the elecriticy system

[Borenstein, 2005a]. The first customers deliver the greatest benefits and marginal benefits

shrink as more customers participate [Borenstein and Holland, 2005]. This new approach

can increase month-to-month bill variation [Borenstein, 2007] and tends to have significant

redistributive effects because it reduces cross subsidies implicit in status quo, time-invariant

pricing [Borenstein, 2006], but solutions to these problems appear feasible. Finding an ap-

proach that benefits the diverse set of electricity policy stakeholders in restructured energy

markets is also a significant, open challenge.1

This project’s first essay improves estimates about how much customers respond

to improved pricing. This will help equip analysts to forecast the implications of dynamic
1It is striking that a vertically integrated, regulated monopoly, the Southern Company, has deployed

dynamic pricing programs more aggressively than utilities where regulators have proclaimed the importance
of bringing market forces to energy markets and introduced formal spot markets and competition among
generators.
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pricing and to decide when and where to deploy it. The ubiquity of prices that diverge from

social cost and the difficulty of addressing them makes evidence about potential benefits

useful for identifying problems worth addressing and for making the case for the change.

This and previous work have found that residential customers who receive better

pricing save money, use less power during periods when power is socially expensive, report

high levels of satisfaction with the new pricing, and tend to remain on the program. It is

thus surprising that most customers decline offers to sign up for improved pricing. Its second

essay uses scholarship at the intersection of psychology and economics to better understand

this resistance and to propose novel policy designs that address it while retaining desirable

economic incentive properties. The second and third essays further explore the feasibility

of implementing such an approach given limited information about customers’ demand

patterns and a utility’s limited flexibility to implement such a program.

The first order policy suggestion is simply to get prices right – by setting them at

the market clearing spot price – for everyone all the time through real time pricing. Fixed

fees or Ramsey pricing might be necessary to cover the system’s fixed costs. Implementing

real time pricing with a possible fixed fee is straight forward.

The opt-in dynamic pricing scheme that this project studies turns out to require

considerably more analysis. The analysis needs to, among other things, identify customers

who provide the greatest benefits and design pricing that attracts them both when they

use decision-making heuristics to evaluate whether to try a novel program and later when

they experience it and are able to compare their bills and comfort levels on the new and

old programs.

Economists’ skepticism that many real programs get so complicated that they are

inevitably seriously flawed from the start is well placed. But incremental change is often

the only feasible way to address flaws in the status quo. Incremental change can deliver real

benefits and can benefit from careful analysis using economic tools. A series of well chosen

incremental changes can eventually achieve the economic goals that are unattainable with

a single broad stroke. Rigorous analysis can identify the most important margins to work

on and identify opportunities to make progress there.
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1.0.1 The questions in the three essays and major conclusions

This project contains three essays designed to better understand opt-in residen-

tial dynamic electricity pricing’s experience in the field and to convert insights about its

performance into guidance for future policies:

1. How much did residential customers in California’s Statewide Pricing Pilot (SPP) field

experiment respond to dynamic pricing? What characteristics of days, climate, and

households affected the size of this response? How did response vary between days

with a routine, weekday afternoon price increase relative to a much higher critical

afternoon price? Are benefits from customer response correlated with costs from fore-

gone cross subsidies? What does this imply about designing an opt-in program that

will deliver significant benefits while it paves the way for expanded programs? This

chapter’s econometric analysis finds that some customers responded far more than

others. Customers in regions where air conditioning is ubiquitous responded the most

to the program and the program had its greatest effect on hot days. This is propitious

because dynamic pricing is largely a policy response to costly, air-conditioning-driven

electricity scarcities on the hottest summer weekday afternoons. Some obvious imple-

mentation strategies would, however, ask many of the most responsive customers to

give up significant cross subsidies to participate. Programs can be designed to attract

and retain the most desirable customers.

2. Can the judgment and decision making literature explain why most consumers reject

dynamic electricity pricing offers that improves incentives and could save them money?

This uses insights from this literature to propose a new rate feature. It makes practical,

revenue-neutral changes that make the offer more attractive to consumers by reframing

periods of critical electricity scarcity as opportunities for customers to earn rebates

without changing its marginal incentives. I simulate the implications of these changes

for customers in a California pilot program.

3. Essay 2 identified three customer-level constraints that characterize desirable incentive-

preserving rebate rates. This, third, essay continues the exploration of whether utili-

ties have the data and flexibility to make customers offers that meet these constraints.

Incentive preserving rebate implementations will use limited data to make offers given

a limited amount of flexibility to choose offers. We explore the trade offs between sim-
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plicity and program performance, and show that simple menus of offers can perform

reasonably well.

Essay two presents a strong case that presentation and incentives both matter and that

incentive preserving rebates can retain good incentives while improving presentation. Fu-

ture research should assess their effectiveness with particular attention to whether added

complexity negates the benefits of the improved presentation. Essays two and three present

evidence that utilities know enough to develop rates that work well for most customers, but

may need to differentiate offers by customer consumption level and geography.
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Chapter 2

The Impacts of Residential Critical

Peak Pricing: Evidence from

California’s Statewide Pricing Pilot

2.1 Background: Critical Peak Pricing and the California

Statewide Pricing Pilot

The cost of generating power fluctuates enormously from hour to hour, but most

customers pay time-invariant prices for power. The wholesale cost of power is well under

10 cents per kilowatt hour (kWh)during most hours but can hit price caps of $1.00 / kWh

during a few scarcity hours and likely has an even higher social cost during these hours.

If customers exhibit even a small amount of demand elasticity for power, then reducing

the mismatch between the fluctuating cost and the fixed price could eliminate billions of

dollars in deadweight losses [Borenstein, 2005a]. The structure of many wholesale electricity

markets makes real time pricing (RTP) a nearly optimal approach to dynamic pricing. RTP

sets a price typically for every hour, often as a function of the day ahead spot market cost

of power.1 This paper assesses the impact of a Critical Peak Pricing (CPP) program. CPP
1RTP is not quite optimal because it sets prices for hour-long periods a day ahead when electricity

scarcities can happen on a second-by-second basis with little notice. In practice, most electricity wholesale
markets manage brief or unanticipated scarcities through “ancillary services” markets for reserve, standby
generation capacity that are separate from the wholesale power market which it uses to manage foreseeable,
extended scarcities. Borenstein [2005b] discusses the selection of the price period granularity and the lag
between price setting and the actual system operation in more detail.
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is a simpler approach to dynamic pricing that approximates RTP using a small menu of off

peak, peak, and “critical”, prices. Peak prices are in effect during scheduled hours, typically

every non-holiday weekday afternoon. The utility can invoke a significantly higher, “critical”

price a limited number of times per season. CPP is the dynamic pricing approach that most

practitioners consider for customers who use only a modest amount of power.2 California

ran a major field experiment, the Statewide Pricing Pilot (SPP), that exposed customers

of its three major investor owned utilities to CPP from July 2003 through September 2004.

The SPP generated data about how a change in pricing affects customers’ power use on

summer weekday afternoons.

In practice, the first generation of residential critical peak pricing programs are

and will likely continue to be opt in, so it is particularly important to understand CPP’s

effects on customers willing to volunteer for CPP.3 The SPP required CPP customers to

agree to participate and allowed them to leave at any time. This paper explores the impacts

of critical peak pricing on electricity use in this field experiment to better understand how

the new prices change the quantity of power customers use during weekday afternoons. It

further tries to understand what kinds of customers and situations lead to the greatest

changes in electricity consumption.

It is worth considering dynamic pricing for residential customers because resi-

dences consume 36% of the electricity used in the US.4 Residential demand may be elastic

enough to create significant deadweight losses in the absence of dynamic pricing. Residen-

tial demand might be more elastic than other customer classes’ demand. Reducing power

consumption in many commercial and industrial uses involves advance planning, requires

temporarily shutting down production, or would annoy customers if it involved reductions

in air conditioning or service availability. Those uses are more expensive to change than is
2RTP might be a stronger option if it were bundled with technology that automates response to quirky,

hour-to-hour and day-to-day price variations. Making this technology easy for users to program to get
response that significantly outperforms response to CPP would be challenging. It might also be important
to find ways to keep the technology from crowding out manual response during extreme price spikes.

3The one kind of universal dynamic pricing program that seems to be politically feasible is a baseline-
rebate approach. These calculate customer-specific baseline usage levels. They create incentives for cus-
tomers to reduce use during critical periods by offering rebates to customers who use less than their baseline
amount of power. Universal participation is quite attractive, but baseline-rebate programs have significant
drawbacks relative to CPP discussed in Chapter 3. The SPP is the kind of CPP that will generally be an
opt in program and is difficult to interpret as evidence about a baseline rebate program. Wolak [2006] is a
careful study of a baseline-rebate program in Anaheim California.

42004 figures from the Energy Information Administration’s Electric Power Monthly:
http://www.eia.doe.gov/cneaf/electricity/epm/table5 1.html
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residential clothes drying or air conditioning, especially of empty homes.

California is beginning to roll out advanced meters to every customer and then

to offer dynamic pricing programs.5 Other states and utilities are strongly considering

residential CPP.

Careful empirical research can provide information about:

1. whether there are benefits that are large enough to justify the investments in advanced

meters and customer education needed for improved pricing programs and

2. about which kinds of customers are most worth recruiting.

There are four central economic questions about the design of practical CPP pro-

grams:

1. Do customers respond to the new prices in the short term? How do weather and

customer characteristics affect the way they respond?

2. In the long term, does having a large cohort of people on dynamic pricing lead firms

to offer products that reduce peak period energy use or that automate response to

prices? Will customers invest in these products? Will they become standard in new

buildings? Will bundling these products with dynamic pricing make it more attractive

and effective? What kind of reputation will dynamic pricing get with customers,

utilities, and regulators and how will this affect the programs’ growth?

3. The customers who make the greatest reduction in peak period usage may be those

who were using the most power during those, now costlier periods under time invariant

pricing. Do the rate designs closest to the status quo, like adding peak surcharges and

off peak discounts, make participation rational for the customers who would respond

the most? Section 2.7.6 finds that the customers who reduced peak and critical

period use most in response to dynamic pricing were using a greater percentage of

their total power consumption during these high cost periods under time invariant
5California’s roll out may create a natural experiment that will generate much larger and richer usage

data than the SPP did. Some utilities have proposed rates that do not have daily summer peak prices
periods. Thus, the SPP data may still be an important source of evidence about the performance of good
CPP rates. There are important opportunities to use data from dynamic pricing once widespread advanced
metering begins to get better estimates of the performance of opt-in CPP by comparing the usage patterns
of customers before and after they joined to the usage patterns of other, similar customers who did not join
a dynamic pricing program. Studies of broad-based dynamic pricing could be even more powerful if they
combined the billing and usage data with survey data on customer characteristics.
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pricing than were less responsive customers. Hence, dynamic pricing implementations

can deny desirable customers the significant cross-subsidies that they received under

time invariant pricing, leaving customers with increased bills despite their significant

response. Analysis in section 2.7.6 shows that simple changes to rate designs can

reduce this problem.6

4. What are the trade offs between designing a rate that captures much of the variations

in the hour-by-hour wholesale cost of power and designing a rate that satisfies cus-

tomers’ preferences for simple, predictable rates that mesh well with their lifestyle?7

The present paper directly addresses the questions about who responds and when

that are raised in question 1. Question 4 about designing rates that are attractive both

to consumers and to regulators and utilities seeking to reduce waste (deadweight loss) in

the electricity sector is quite important and is largely unaddressed in the literature, but

is beyond the scope of this paper. Understanding firms’ (customers’) interest in offering

(installing) new technologies that make dynamic pricing programs more effective and easier

to participate in is quite important, but this and other issues from question 2 are difficult

to address in the absence of with long term experience with large scale deployments of

dynamic pricing.

2.1.1 Prior Work

This paper extends a literature that uses the same SPP data set, namely:

• Faruqui and George [2005] and the SPP final report [Charles River Associates, c]

use a continuous elasticity of substitution demand model to estimate the impacts of

the SPP’s change in prices. These papers compare customers on CPP to the SPP’s
6Borenstein [2006] simulates the implications of dynamic pricing for industrial customers and find that

it creates broad categories of winners and losers, with some groups losing even if they have fairly elastic
demand. It appears that that results for residential customers are qualitatively similar.

7We might worry that loss averse customers might reject a rate that raised the cost of evening cooking
and climate control even if it lowered their overall bill. It is also likely that the electric demand elasticity of
businesses goes up as workers start going home (since it is easier for them to reduce lighting, equipment, and
climate control use when offices are mostly empty) while residential demand becomes less elastic. If that
were the case, then a practical, efficiency improving policy might raise residential rates in the afternoon and
commercial rates in the early evening.
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control group. They make fairly strong functional form assumptions about the nature

of customer demand. The present paper explicitly tests a subset of their assumptions.8

• Herter et al. [2007] looks at the combined effect of climate and temperature9 on

the impacts of dynamic pricing. Specifically, they estimate the difference in CPP

customers’ electricity consumption between critical-priced and ordinary, peak-priced

weekday afternoons.

• Herter [2006a] estimates the impacts of the critical price relative to ordinary week-

days using just data from the “treatment” group that experienced CPP. It runs one

regression per customer and does not report disaggregated impacts of customer char-

acteristics like climate zone or central air conditioning ownership on response. It

estimates use hour-by-hour.

• Chapter 3and Herter [2006b] analyze the same database to consider rate-design related

questions, but neither attempts multivariate impact analysis.

This paper adds to the existing literature by using a difference-in-difference regression frame-

work. Its approach combines Herter et al. [2007] and Herter [2006a]’s functional form

flexibility with Faruqui and George [2005]’s ability to estimate the impact of both the ex-

ceptional, critical prices and the ordinary, scheduled weekday time-of-use (TOU) peak price

and to explore how temperature and customer characteristics affect response.

Wolak [2006] is careful applied econometric work using a similar data set on a

universal participation, baseline-rebate residential program that offers rebates to customers

who “conserve” relative to their highest historical usage. Wolak analyzes a program with a

different rate and a far more homogeneous sample than the SPP. It finds significant benefits,

but also strategic consumer response in the form of increased use during baseline-setting

periods that make the customers eligible for more rebates later.

All of these studies suggest that dynamic pricing causes significant reductions in

usage during high priced periods.
8Faruqui and George [2005] is adapted from the executive summary of Charles River Associates [c] which

provides a detailed documentation of their econometric approach.
9Climate (i.e. the typical weather pattern) drives customers in some areas to invest in air conditioners

and insulation. Temperature is the weather realization on a single day. Electricity demand is a function of
the interaction between temperature and climate, since customers on 95oF days in hot climates tend to run
their air conditioners, while customers on 95oF days in temperate climates tend not to have air conditioners
to run.
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This paper addresses issues that the existing Statewide Pricing Pilot papers did

not address. In particular, the existing papers lack a simple, multivariate analysis that

explores factors’ relative importance in explaining dynamic pricing customers’ reductions

in usage. This paper also incrementally improves on the existing models’ flexibility, infor-

mativeness, and econometric defensibility. I also discover selection issues that may change

the interpretation of some of the existing literature.

2.2 Studying Opt-in CPP: The SPP’s recruitment process,

selection issues, and time line

The performance of opt-in critical peak pricing rests centrally on the rate at which

customers opt in, the focus of Chapter 3, and on how the new pricing changes participants’

consumption relative to what they would have used under the alternative rate.10 The SPP

has a treatment group (I use “CPP group” and “treatment group” interchangeably) and a

control group that did and did not experience CPP, respectively. The SPP collected data on

each group’s usage patterns from before and after the CPP group switched from California’s

standard, time-invariant rates to CPP. This design measures the behavior of control and

treatment (CPP) groups before and after the treatment group experienced a change. The

design could lay the groundwork for a clean, powerful difference-in-difference style analysis.

Unfortunately the SPP’s implementation, like most field experiments, diverged from its de-

sign.11 Getting the SPP into the field was an impressive piece of inter-organizational work

that involved negotiation and coordination among three utilities, state agencies, stakehold-

ers, and evaluation contractors. Some members of the working group that oversaw the SPP

objected to making CPP nearly mandatory or even putting customers on CPP unless they

actively opted out [Charles River Associates, c, 30]. The resulting design that required

CPP – but not control – customers to affirm that they wanted to participate makes the

treatment and control groups less comparable12, but has the serendipitous implication of
10The evaluation literature (e.g. Diamond and Sekhon [2006]) calls this the treatment effect on the treated.
11This kind of problem is widespread enough that there is a “broken experiments” literature (e.g. Barnard

et al. [2003]) that considers ways to fix this kind of flaw.
12An even better, if more expensive, design would recruit a sample of customers willing to participate in

a study of new electric rates and then randomly assigned these, willing customers to control and treatment
categories.
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making the treatment group a better study of realistic, opt-in CPP.13 The SPP’s implemen-

tation reflected a great deal of attention to sampling and to estimating a demand system,

but the experiment would have been stronger had it worked to ensure the comparability

of the treatment and control groups’ recruitment process and a clean delineation between

the before and after price change periods by doing things like putting, “New prices begin

July 1” in bold in the first few sentences of its mailings. This section describes the SPP’s

implementation and how its implementation complicates the analysis.14

The SPP aspired to recruit treatment and control groups that were representa-

tive of the state’s population as a whole and comparable to each other, but it recruited

treatment and control customers in quite different ways. Potential CPP customers got de-

tailed information and a chance to opt in to the experiment. Control group customers were

randomly selected.

The SPP sent potential CPP customers detailed invitation letters [Charles River

Associates, b, 18-23] describing the new pricing, study requirements, and $175 in participa-

tion payments. Many customers who demand a large amount of weekday afternoon power

apparently declined offers to join the CPP group or left the experiment early. A study of

why customers chose not to participate reports that, “Virtually everyone who refused to

participate in a particular pilot rate believed they would have wound up spending more -

and perhaps a lot more - on electricity if they switched to the new pricing plan.” But it

goes on to temper the notion that this was a fully rational choice, writing that, “[N]one of

the respondents had actually used the graphics to calculate whether they would be better

off, or worse off, under the new pricing plan. Everyone admitting to just ‘eye-balling’ the

bar chart and new rate plan and then deciding they probably would wind up spending

more.”[Focus Pointe, 6,22] The CPP group may be representative of customers who would

consider opting in to a CPP program.15

13It is possible that there are minor differences between the way I use the phrase “opt-in” and the way
that the SPP final report authors understand it. Regardless of any semantic differences, we share an
understanding that customers had to take action by either returning the enrollment card or agreeing on
the telephone to participate and that only about 20% of the customers that the experiment tried to recruit
did so. Specifically, a passage in the SPP Final Report [Charles River Associates, c, 30] characterizes the
design as opt-out: “The final SPP design involved mailing an enrollment package to selected customers and
obtaining an affirmative response regarding the willingness of each customer to participant (sic.). As such,
it is a voluntary program but one predicated on an opt-out recruitment strategy rather than an opt-in one.”

14There are also extensive discussions of SPP implementation in Charles River Associates [c,d,a,b,a],
Herter [2006a]

15Perhaps, more accurately, the CPP group equips us to construct a group that that is representative
of the customers who would opt in as a whole. There are good data about how many customers in each
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SPP Rates $/kWh in Surcharges and Credits
high ratio rate low ratio rate

critical +60.9 +41.8
peak +11.6 +9.8
off peak -5.1 -1.2

Table 2.1: The SPP Summer Rates. The SPP defined its peak, off peak, and critical
rates in terms of surcharges and credits relative to the standard, underlying utility rates.
The underlying rates have a complicated increasing block structure. The rates changed
modestly during the course of the experiment. “The average prices, expressed in cents/kWh,
during the summer of 2003 were 12.7 for PG&E and, rounded, 14.1 for both SDG&E and
SCE” [Charles River Associates, a, 21]. The experiment assigned each CPP customer to
either a high or a low ratio rate. The high ratio rates had a bigger difference between the
cost of afternoon and off peak power than did low ratio rates. This table presents PG&E
and SDG&E’s Summer CPP Surcharges and Credits for the SPP in cents per kWh. The
SCE Rate appears to deviate from the PG&E and SDG&E rates reported here by up to
two cents. Sources: author’s calculations based on Pacific Gas & Electric [c], San Diego
Gas & Electric, Southern California Edison, Charles River Associates [b] While the high
and low ratio summer rates are reasonably similar, they differ strikingly during the winter.
Notably, during the winter, the peak surcharge is 22.3 cents for the high ratio rate and 0.7
cents for the low ratio rate.

The SPP also had a randomly-selected control group that continued to get status

quo, time invariant rates. The control group is a stratified sample that can be weighted to

represent customers statewide. The central statistical challenge is to use the control group’s

residence category and climate zone refused to join or failed to respond before the experiment contacted
a prospective treatment customer who agreed to participate. The SPP’s experience identifies some groups
that may be more difficult to recruit than others. The analysis presented here, however, does not use the
data about the difficulty of recruiting customers because there are a variety of challenges in interpreting the
SPP’s experience as being comparable to an opt-in rate program, including:

1. A full scale roll out of opt-in CPP by a utility that believes that it can capture some of the additional
surplus created by dynamic pricing is likely to employ effective, carefully tested marketing materials.
By contrast, the utilities’ research on why people refused to participate in the SPP says in part
that the recruiting materials were “were quite ineffective [marketing]. .... The materials made scant
reference to any benefit - direct or indirect - that the customer might gain by participating....” [Focus
Pointe, 6]

2. Potential SPP subjects were offered opportunities to get paid $175 and to contribute to developing
better rates for their community in a way that participants in a more conventional rate would not.

3. The SPP’s designers did not have enough field evidence about customer responsiveness to tune rate
offers and recruiting materials to attract the kinds of customers who would deliver the greatest
reductions in the use of socially expensive power.

Rather, the present analysis imagines the deployment of a statewide marketing effort that recruits an equal
proportion of each climate zone and customer class and respond like SPP participants did. Accurate in-
formation about how difficult it is to recruit customers in each class is certainly necessary for effective
deployment.
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behavior to construct a valid counterfactual about what the CPP group would have done

in absence of the new prices. The central requirement for the control group to provide this

valid counterfactual is that, controlling for observable differences, the expected behavior

of the control group is identical to what the expected behavior of the CPP group would

have been during the treatment period had they remained on status quo, time invariant

pricing.16

This section describes the process that created the data and the resulting statistical

challenge. The SPP’s reports [Charles River Associates, c,a]17 document the Statewide

Pricing Pilot, its sampling strategy and final enrollment. Their appendices [Charles River

Associates, d,b] contain examples of the recruitment materials, Welcome Kits, and surveys

sent to customers. This section briefly describes facts documented elsewhere18 and describes

in depth some issues that have received little previous attention.

2.2.1 SPP CPP Group Time line

This section describes when the SPP collected data about the CPP group relative

to its provision of information and incentives that could have affected the CPP group’s

behavior. It also describes how the SPP’s structure shapes some aspects of the analysis.

• Billing data record each customer’s Summer 2002 average daily use. It is impossible

to know how much of this consumption took place during weekday afternoons. These

data from the year before the experiment began are, however, uncontaminated by the

experiment.

• The experiment identified potential CPP customers using the sampling strategy de-

scribed in Charles River Associates [c,a]. The experiment sent letters19 to potential

customers starting in April 2003. These letters described the structure of the new
16See Diamond and Sekhon [2006] for an extended discussion of this and an argument that genetic matching

using characteristics including propensity scores is the best way to construct a group that provides a valid
counterfactual. Although the current chapter does not use a matching approach, doing so is a very logical
extension. It is likely that the CPP group is more civic minded, more adventurous, and more price responsive
than the control group, but none of these factors threatens the validity of using the control group as a
counterfactual if the condition above holds.

17The 2003 report [Charles River Associates, a] has more detail on some sample selection issues than does
the final report [Charles River Associates, c].

18In particular, I do not do justice to the carefully thought out sampling strategies described in Charles
River Associates [c,a].

19A copy of a typical letter is in the final report appendices [Charles River Associates, b, 18-23].
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rates in detail on their second page but only mention the July start date for the new

rates on their third page. Experiment staff spent up to two weeks trying to con-

tact each customer. They contacted the next alternate in line if efforts to reach the

customer failed, the customer refused to participate, or the customer was ineligible

Herter [2006a].20 Efforts to meet recruiting goals and to replace customers who exited

continued throughout the experiment.

• The SPP installed “interval” electric meters on participants’ residences. The interval

meters recorded power consumption every 15 minutes, both during a pretreatment

period before new prices began and during the experiment itself. The first 31% of

all customers’ meters were activated in March through May of 2003.21Another 23.5%

started reporting data exactly on June 1, 2003 for a total of 54%. The analysis

reported in this paper uses pretreatment data collected starting June 1, 2003 because

only a select group of customers have data before then. A total of 75% of interval

meters were on by July 1, 2003. The analysis reported here considers only the initial

cohort of participants whose meters were on by June 15th. This allowing their usage

to be measured on at least one pretreatment weekend day and one weekday. CPP

customers are included in the analysis only if they experienced the new rate beginning

July 1, 2003.

• The SPP mailed the initial cohort of CPP customers “Welcome Kits”22 starting on

June 17-18, 2003. It took between 1 and 2 weeks to complete mailing this batch

[Barnes, 2007]. The Welcome Kits included detailed instructions about how to reduce

electricity prices during weekend afternoons by changing the use of air conditioners

and other major appliances but only mentioned that the new rates go into effect on

July 1 on their 18th page. I deal with this by discarding data from between June 18
20The experiment listed 10 possible accounts for each slot in the experiment and ranked them from a

first choice to a tenth choice and sent out invitations sequentially. “Ultimately, about 20% of customers
accepted the invitation to participate, 15% declined to participate, and the remaining 65% were unreachable
or otherwise excluded. Subsequent analyses using mean comparison and Heckman correction indicated that
the final sample was a representative cross-section of California residents by appliance holdings, income,
education, and 16 other measured variables” (Herter [2006a] citing a draft of Charles River Associates [a]).
However, section 2.2.4 below documents a couple of possibly important differences between the control and
CPP groups.

21The first CPP customer meters report data starting on April 23, 2003. The first control group meters
came online March 31.

22A typical Welcome Kit is in the Report Appendices [Charles River Associates, b, 18-23]. It appears to
be for customers starting in a later cohort because its time line differs from the Welcome Kits that Karen
Herter provided the author. The Welcome Kits were nearly identical across utilities.
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and July 3rd inclusive and further discuss how this affects my analysis in section 2.2.5

below.

• Critical Peak Pricing began July 1, 2003 for the initial cohort of customers. This

paper analyzes the initial cohort’s response.23

• Critical Peak Pricing remained in effect until the subjects opted out, moved, or the

available data set ended at the end of September 2004.

• The Summer rates that this paper analyzes were in effect from May 1 through October

31 each year.

• Customers completed a survey24 “in most cases at least one month after the Welcome

Package was sent. Many surveys were not completed until the fall of 2003” [Barnes,

2007]. The surveys described the customer’s appliances, home, household members,

and appliance usage habits. The CPP group reports being far more likely to use their

dishwasher, laundry, and air conditioning only off peak in ways that the Welcome Kit

suggests. The survey’s timing makes it impossible to understand whether there were

preexisting differences in appliance use habits between the CPP and control groups.25

2.2.2 CPP winter and summer rates

The SPP assigned each CPP customer to either a “high ratio” or “low ratio” rate.

The winter season high and low ratio rates are quite different, while the summer season

high and low ratio rates are qualitatively quite similar.26 Further, California electricity
23There were “late starting” cohorts of CPP Customers who were recruited too late to have their meter on

for roughly a full month before July 1, 2003. This cohort experienced CPP about a month after their meter
was turned on. Welcome kits were sent to late starting customers on an ongoing basis. I drop them from
this analysis because 1) there is no data available about when late starting customers received their welcome
kits and thus what part of the month of pretreatment data collected is meaningful and 2) comparing CPP
pretreatment data from many time periods to control pretreatment data exclusively from the month of July
may confound seasonal shocks to weather demand with preexisting differences.

24There is a copy of the survey and documentation about how Faruqui and George coded its variables
for use in their work in Charles River Associates [d]. In a few cases that should be clear from the tables I
analyze more detailed, disaggregated data from the survey than they did.

25For example, it would be useful to know whether the CPP group over represents people who tend to
work late or people who tend to do laundry on weekends.

26The SPP chose this rate design to meet several implementation constraints. The rate had to be revenue
neutral for the class average customer over the course of the year while allowing identification with a demand
model that considered total daily consumption as a function of the average cost of power over the course of
the day. Requiring that the new rate be revenue neutral (i.e. maintain the average price) over the course
of the year while changing the average price within each day forces shifting revenue across seasons. Charles
River Associates [c, 18-20] discusses this in detail.
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demand is summer-peaking, so the scarcity periods, when reducing demand has the highest

value, are typically summer occurrences. Thus, the current analysis considers only summer

rate data. Both high and low ratio summer rates create moderate incentives to shift use

away from ordinary weekday afternoons and strong incentives to shift use away from critical

afternoons. Thus, there is good reason to pool the customers into a single CPP “treatment”

group and to test whether this pooling is appropriate.

By contrast, the winter low-ratio rate provides almost no incentive to shift usage

away from ordinary weekday afternoon peak periods, while the high ratio rate invokes

higher time-of-use (TOU) peak prices during the winter season than during the summer.

This difference should be central to any analysis of winter behavior. A natural extension

of this project would analyze the winter results after interacting each customer’s rate with

every analysis variable. This interaction is roughly what Charles River Associates [c] and

Faruqui and George [2005] do.27

2.2.3 Control Customer Time Line

Control customers got a note from the utility indicating that their meter had been

replaced and received the survey and follow up mailings, phone calls, and visits until they

completed the survey. Other than that, they received no incentives or information to shift

their power use. This method allowed the experiment to enroll the first control customer

that it considered most of the time, while it had to contact, on average, between two and

three potential CPP customers in order to enroll one for the first cohort. Table 2.2 shows

that this difference is highly statistically significant.

2.2.4 Systematic Differences between the Control and Treatment Groups

Table 2.2 compares the treatment and control groups on a variety of characteris-

tics.28 The treatment and control groups are generally quite similar, with a few notable
27The approach taken below already estimates separate dummies for the impact of being on high ratio

rates during TOU peak and critical hours, which is the minimal acceptable specification. But when the
rates suggest that low ratio rates will use their electric heaters more like control customers than like high
ratio customers, it seems compelling to use a specification that allows low and high ratio customers to have
different sensitivities to cold weather.

28Table 2.2 reports that there are the minimum peak period load in the data is zero. In fact, a bit less than
1% of all customer-non-holiday weekdays report zero peak period load. These entries are strange because
things like refrigerators and electronics tend to draw power regardless of whether customers are home.
Extensive investigations reveal no clear patterns by date or by utility. Two customers, who each report
more than 100 days with zero use account for about half of the zeros. Two explanations seem plausible:
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control treatment p-value min max
subjects subjects

avg. daily use, kWh, summer 2002 17.10 16.70 0.643 2.06 78.30
weekday peak use as % of total use; 6/1-15/03 0.21 0.19 0.066 0.05 0.52
avg. use, kWh, weekdays 2-7PM, June 1-15
’03

4.24 3.82 0.144 0.41 30.50

avg. daily use offpeak usage, kWh, June 1-15
’03

10.80 10.70 0.904 1.49 54.00

avg. 4PM temperature, June 1-15 ’03 74.00 73.70 0.698 60.20 99.90
# children 0 to 5 0.32 0.29 0.674 0.00 4.00
# children 6-18 0.65 0.59 0.538 0.00 5.00
# people over 65 0.27 0.32 0.507 0.00 4.00
everyone in household is > 65 0.09 0.13 0.251 0.00 1.00
home built after 1979 0.39 0.38 0.932 0.00 1.00
% work from home part/full time 0.15 0.12 0.384 0.00 1.00
agrees w/ ”everyone should pay a little ...[for]
a cleaner environment”

0.53 0.67 0.007 0.00 1.00

agrees that ”a cleaner environment will mean
fewer jobs”

0.23 0.20 0.576 0.00 1.00

agree/strongly agree that ’global warming is a
threat...’

0.71 0.66 0.344 0.00 1.00

1=rates utility performance good or excellent 0.78 0.79 0.881 0.00 1.00
household head is a college graduate 0.44 0.47 0.596 0.00 1.00
has central air conditioning 0.45 0.43 0.783 0.00 1.00
has 1+ room air conditioners 0.15 0.16 0.814 0.00 1.00
electric well pump 0.03 0.03 0.813 0.00 1.00
# refrigerators + freezers 1.35 1.31 0.553 0.00 5.00
electric hot water 0.14 0.10 0.263 0.00 1.00
electric range 0.38 0.30 0.096 0.00 1.00
electric oven 0.44 0.40 0.407 0.00 1.00
electric dryer 0.37 0.31 0.199 0.00 1.00
programmable thermostat for Central AC 0.23 0.22 0.826 0.00 1.00
swimming pool 0.08 0.08 0.898 0.00 1.00
electric spa 0.07 0.05 0.318 0.00 1.00
number of customers contacted before one ac-
cepted

1.22 2.74 0.000 1.00 11.00

Table 2.2: Mean household characteristics of customers in the regression sample. With a few
exceptions that are explored in depth in table 2.3, the treatment and control groups are statistically
indistinguishable on observable characteristics. All reported values are weighted by region to give the
sample the same geographic distribution as the state’s population. m indicates that the p-value on
equality of means comes from a Mann-Whitney rank sum test conducted on an unweighted sample
of categorical answers. This non parametric test is appropriate because customers who reported
having 750-1000 square feet of space have larger houses than those who checked “less than 750”
but we have no basis on which to develop an accurate point estimate of the difference. The average
income and square footage figures are coded as documented in [Charles River Associates, d, 113-119],
typically assuming that each customer is at the midpoint of the range they selected. The population
reported here is from the “basic survey variables” regression 2 below. This requires that they have
meters turned on by June 15, 2003 and have valid answers to the people per household, number of
bedrooms, and air conditioning questions.
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whole regression
sample

apts. and low use
single family

high use single
family

cust.
type

all
sub-
jects

seen
> 4
months

all
sub-
jects

seen
> 4
months

all
sub-
jects

seen
> 4
months

kWh / day, summer ’02
control 17.10 17.40 12.20 12.40 33.20 33.10∗∗

CPP 16.70 16.70 12.30 12.60 30.90 30.10∗∗

weekday kWh 2-7PM,
June 1-17, ’03

control 4.24 4.29∗ 2.95 3.00 8.46∗∗ 8.42∗∗∗

CPP 3.82 3.79∗ 2.75 2.82 7.27∗∗ 6.90∗∗∗

daily offpeak kWh, June
1-17 ’03

control 10.80 10.90 8.14 8.26 19.40 19.30
CPP 10.70 10.80 8.25 8.46 18.70 18.30

4PM temperature, June
1-17 ’03

control 74.00 73.90 73.20 73.20 76.40 76.30
CPP 73.70 73.70 73.00 73.10 75.90 75.40

# people over 65
control 0.27 0.28 0.25 0.26 0.34 0.34
CPP 0.32 0.34 0.31 0.33 0.35 0.35

everyone in household is
> 65

control 0.09 0.09 0.09 0.09 0.09 0.08
CPP 0.13 0.14 0.14 0.16 0.08 0.08

% work from home
part/full time

control 0.15 0.16 0.11 0.12 0.28 0.28
CPP 0.12 0.12 0.10 0.09 0.21 0.20

agrees “everyone should
pay [for] a cleaner
environment”

control 0.53 ∗∗∗ 0.52 ∗∗∗ 0.56 0.56∗ 0.43∗∗∗ 0.43∗∗∗

CPP 0.67 ∗∗∗ 0.69 ∗∗∗ 0.66 0.68∗ 0.70∗∗∗ 0.70∗∗∗

agree that “global
warming is a threat...”

control 0.71 0.71 0.76 0.77 0.53 0.53
CPP 0.66 0.67 0.67 0.68 0.63 0.63

rates utility good or
excellent

control 0.78 0.78 0.80 0.80 0.73∗ 0.73∗

CPP 0.79 0.80 0.78 0.80 0.82∗ 0.83∗

central air conditioning
control 0.45 0.45 0.38 0.38 0.67 0.67∗

CPP 0.43 0.42 0.39 0.38 0.58 0.56∗

electric range
control 0.38∗ 0.38∗ 0.37 0.37 0.41 0.41
CPP 0.30∗ 0.29∗ 0.28 0.27 0.35 0.34

recruited before
participant found

control 1.22 ∗∗∗ 1.22 ∗∗∗ 1.22 ∗∗∗ 1.22 ∗∗∗ 1.23∗∗∗ 1.23∗∗∗

CPP 2.74 ∗∗∗ 2.76 ∗∗∗ 2.71 ∗∗∗ 2.75 ∗∗∗ 2.85∗∗∗ 2.80∗∗∗

total annual household
income, 1000’s

control 68.17∗m 68.68∗m 59.25∗m 59.79∗m 94.52m 94.16m

CPP 58.87∗m 59.45∗m 49.41∗m 50.38∗m 89.51m 89.50m

Table 2.3: Differences between control and CPP groups: at the beginning of the experiment
and after the first four months of attrition. The high use CPP group uses less power during
peak hours than does the high use control group. This difference grows with attrition.
Statistical significance of differences between the control and CPP groups: * .10, ** .05,
and *** .01. Attrition causes no statistically significant changes in mean. I have not run a
third interesting hypothesis test about whether any of these characteristics are statistically
significantly correlated with a customer’s likelihood of leaving the study. All reported values
are weighted by region to give the sample the same geographic distribution as the state’s
population. As described in depth in the caption to table 2.2, m indicates that the p-
value on equality of means comes from a Mann-Whitney rank sum test conducted on the
unweighted, categorical answers.
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Figure 2.1: The CPP group has fewer customers who both use a large total amount of power
and use a large proportion of that during peak-priced periods than does the control group.
There are relatively few treatment customers who used more than about 35 kWh per day
and whose peak use was roughly as big or bigger than their off peak use. Thus, there are
few treatment customers in the top right part of the scatter plot.
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exceptions, namely:

• The CPP group has fewer high use customers who also use a high proportion of their

power during peak-priced periods. If we separate this into components, we find sta-

tistically insignificant differences in the distributions of total use or of proportion of

power used on peak. The distributions start out with this difference and attrition

increases the difference. Further, the SPP divided its sample into three cells: apart-

ments, and high and low use single family homes. This difference is only significant in

the high use single family home cell. People who use more power may have a better

sense of when and how they use it. Controlling for the percentage of power that cus-

tomers use during weekday afternoons, larger users are more likely to notice changes

in their bills and to believe that their bill changes outweigh the other personal and

social benefits of participation in the experiment.

• CPP and control customers express similar levels of concern about environmental

problems, but treatment customers are more committed to civic action. CPP cus-

tomers are more likely to agree or strongly agree with the statement: “I believe

everyone should pay a little bit more to ensure a cleaner environment.” The CPP

and control groups are, however, indistinguishable in their propensities to agree with

“The cost of a cleaner environment will mean fewer jobs and hurt the economy” (sic.)

and “Global warming is a threat I am seriously concerned about.” This apparent

difference in civic-mindedness is unsurprising in a social experiment being sponsored

by state agencies and advertised through materials that “were quite ineffective [mar-

keting]. .... The materials made scant reference to any benefit - direct or indirect -

that the customer might gain by participating....” [Focus Pointe, 6]

• The CPP group begins having fewer kids under 5, but attrition makes this difference

statistically insignificant. While young children might seem to make adjusting elec-

tricity use more difficult, the evidence suggests that the kids under 5 in our data do

not cause much of an increase in afternoon consumption.29

• The treatment and control groups start with statistically indistinguishable numbers of

these zeros could be a product of known meter problems or they reflect periods in which customers shut off
their electricity e.g. for repair work.

29There is no data available about whether the kids under 5 are in day care. We cannot rule out the
possibility that the CPP group has fewer kids actually present weekday afternoons than the control group.
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home businesses but many treatment customers with home businesses exit the sample,

creating a statistically significant difference.

• One in 20 differences between samples drawn from an identical population will be

statistically significant at the 5% level purely by chance. Thus, this section may offer

causal stories about random differences.

Appendix C lists the survey answers for the complete, available sample. The ap-

pendix both has more statistical power than the tables of means from the regression sample

presented in the main text and may be useful for assessing whether selection problems bias

findings in other papers in the literature.

2.2.5 The potential for premature response

The SPP sent CPP customers two detailed descriptions of the new pricing system

that did not state the date the new prices took effect boldly, up front. This could have

spawned premature reduction in afternoon loads and contaminated the pretreatment data.

• Invitation letters: The letters inviting customers to join the CPP group only men-

tioned that the new pricing went into effect in July, 2003 on their third page. The

letter’s second page describes the CPP rate with text, graphs, and tables. An SPP

report that explored the decision making of people who refused to participate reports

that “Respondents were commonly reluctant to take the time to read the pieces word

for word, so they resorted to scanning them for information and to gain understand-

ing.”[Focus Pointe, 21] Premature customer response would bias impact estimates to

understate the changes caused by the new rate. Unfortunately, contamination from

premature response to CPP and a selection problem that causes over representation of

customers with preexisting, flat load shapes will often look quite similar in the data.

The appropriate statistical strategies to deal with these problems are different. If,

however, premature response in early June were a serious problem, we would expect

to see a statistically significantly different relationship between the CPP and time-

invariant subjects’ uncontaminated, pre-experiment average daily use from summer

2002 and average afternoon use during June 2003. We would also expect to see a dif-

ferent relationship between treatment and control customers’ weekend and weekday

use during June because treatment customers would be shifting use of equipment like
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washers and dryers from weekdays to weekends and because they would be reducing

their air conditioning use only on weekdays. The regression presented in table 2.4

fails to reject the null hypothesis that there is no treatment-control difference in these

relationships at the p=.2 level.30

• Welcome Kits: The Welcome Kits first mention that the rate change takes place

on July 1 on page 18. The start date comes long after they explain how to reduce

peak period electricity use. The usage data indicates that the CPP group reduced its

peak period power use relative to the CPP group’s pattern in the last week of June.

The first Welcome Kits were mailed June 17, 2003 and mailing continued for a couple

weeks.

2.2.6 Choosing a Reliable Subset of Data

I work around some of the deviations from an ideal experimental design by ana-

lyzing only about 60% of the data:

• I address late Welcome Kit arrival and apparent premature response to the Welcome

Kit by dropping all data from June 18 through Thursday, July 3, 2003 inclusive.

• To deal with the gradual deployment of meters, I focus on the initial cohort of cus-

tomers which started CPP on July 1, 2003 and had meters on by June 15, 2003.

Further, I exclude pretreatment data from before June 1, 2003.

• Weather data for the PG&E region are missing for August, 2003. Hence, I drop those

data.

• I only consider data from the Summer rate season.

Some problems with this data set are impossible to fix. The unfixable problems

include the fact that customers knew too much about the coming prices when they decided

whether to sign up and that appliance use habits were surveyed after the price change.
30Another analysis that could look at this issue would look at whether use drops and rebounds right at the

edges of the 2:00 to 7:00 PM peak period in an effort to distinguish customers who were responding early from
customers who had a preexisting flat load shape, but this might only spot customers who had programmable
thermostats or who were at home to make manual changes to power use on weekday afternoons.



www.manaraa.com

24

Dependent variable: consumption on non holiday weekdays in kWh/h
Controlling for Summer
2002 Use

Also controlling for
Weekend Use

Pretreatment During Pretreatment During
Treatment Treatment

Treatment Customer
-0.188 -0.109 -0.098 -0.034

( 0.155 ) ( 0.132 ) ( 0.111 ) ( 0.100 )
electric use, kWh / day,
summer 2002

0.057∗∗∗ 0.066∗∗∗ 0.010 0.033∗∗∗

( 0.005 ) ( 0.004 ) ( 0.006 ) ( 0.005 )
treatment customer * use,
kWh / day, Summer 2002

0.004 -0.006 0.015∗ 0.003
( 0.007 ) ( 0.006 ) ( 0.008 ) ( 0.008 )

constant
0.058 0.123 0.049 0.123∗

( 0.122 ) ( 0.104 ) ( 0.084 ) ( 0.070 )
avg. weekend 2-7PM use,
kWh, 5/31-6/15 2003

. . 0.149∗∗∗ 0.102∗∗∗

. . ( 0.013 ) ( 0.012 )
trt. cust. * avg. use, kWh /
2-7PM wknds June 1-17 2003

. . -0.041∗∗ -0.032

. . ( 0.020 ) ( 0.022 )
R2 0.394 0.367 0.525 0.415
N 4327. 67211. 4318. 65881.
P-value, all treatment customer
coefficients=0

0.200 0.0006 0.209 0.002

Robust standard errors, clustered by customer in parentheses.
Significance: *=10% ** =5% ***=1%

Table 2.4: Regressions comparing the relationship between historical use and weekday peak
use in the control and treatment groups. If there is no premature (i.e. before June 18, 2003)
response to the price signals, there should be no difference between these relationships in the
pretreatment data. If the treatment succeeds, there should be a difference in the treatment
period data. We find exactly that pattern.
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One group of authors involved in running the SPP report that they decided not

to use pretreatment period data as a control (and hence to only estimate the impacts

of the critical price beyond the impact of the daily TOU peak price) because “There is

some debate about how accurately the SPP pretreatment load data reflects uninfluenced

pre-experiment load, since customers received information and instructions about how to

reduce peak loads prior to the pretreatment period” [Herter et al., 2005, 7]. A second group

of authors appears to have used all of the pretreatment data [Charles River Associates, c,a,

Faruqui and George, 2005]. This paper takes an intermediate approach.

2.3 Econometric Approach

This paper takes a difference-in-difference approach to estimating the impacts of

dynamic pricing. Difference-in-difference estimates assume that the control and treatment

groups would have maintained any preexisting differences and have experienced, on average,

the same changes in consumption over time. It attributes any differences in their trajectories

after the price change to dynamic pricing. The approach taken here:

• Starts with a standard four-cell difference-in-difference (before/during)*(control/treatment)

setup. It generalizes this to a six-cell case with two “during” periods, representing

peak and critical priced afternoons respectively.31

• Interacts customer and customer-day characteristics with the indicator variables for

the six cells. These characteristics include the customer’s summer 2002 average daily

electricity use, the customer’s climate zone, whether the customer has central air

conditioning, and the number of cooling degree hours on each afternoon.

• Adds a more detailed set of controls for day and weather that are not interacted with

treatment status.

I estimate:32

avgLoadit = αTX∗ + δTTrtCustomeritX∗ + γTTit + κTTrtPeriodtX∗ +
31The coefficients and p-values would not change if we were to run the estimates as two conventional

difference-in-difference regressions: one comparing the pretreatment period to ordinary days and one com-
paring the pretreatment period to critical days.

32Bold characters and Greek characters are vectors.
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νTCriticalPeriodtX∗ + βTPeakPriceitX∗ + ψTCriticalPriceitX∗ + εit

Where:

• avgLoadit is customer i’s average kW (i.e. kWh/hour) consumption from 2-7 PM on

weekday t.

• X∗ =

 1

Xit

 Thus interacting a variable k with X∗ yields both the base effects

of k and interaction terms involving products of k and Xit. The product αX∗ thus

contains a constant.

• Xit is a vector of customer specific, and sometimes customer-day specific, controls

drawn from 1) data about the customer from the SPP classification and billing data

system, like the customer’s climate zone and whether the customer lives in a single

family house, 2) data from the weather station closest to the customer, 3) the cus-

tomer’s answers to survey question, and 4) data about the customer’s hour-by-hour

usage during the pretreatment period.

• Tit is a vector of controls for day of week, calendar month, and year and the interactions

of these variables with quadratics of cooling and heating degree hours.

• TrtCustomeri is 1 if the customer opted into the CPP group and zero if the customer

is in the control group.

• TrtPeriod is 1 during the period in which the first cohort of treatment customers got

CPP, namely all days after July 1, 2003. It is zero before July 1, 2003.33

• PeakPriceit is 1 if customer i received a TOU peak, non-critical price on day t and is

zero otherwise.34

• CriticalPeriodit is 1 if a critical event was declared for CPP customers in i’s climate

zone on day t and is zero otherwise.
33This analysis drops the cohorts of “late starting” treatment customers whose experience with CPP began

after July 1, 2003 or control customers whose meters were activated after June 15, 2003.
34Making the PeakPriceit variable zero on critical days makes the standard errors on critical impacts easy

to interpret, which is useful in section 2.4 below. This unconventional choice reflects a judgment that it
was more convenient to have coefficients that tell us whether the complete impact of temperature or air
conditioning ownership during a critical price event was statistically different from zero and to have to run
an explicit hypothesis test to know whether the difference between the TOU Peak and critical difference was
statistically different from zero than to have the opposite situation.
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• CriticalPriceit is 1 if the utility successfully notified customer i that t was a critical

day and is zero otherwise.

2.3.1 Adding fixed effects to this framework

Some of the analysis reported below adds customer fixed effects to this econometric

framework.35 A fixed effects approach allows the regression to estimate customer-specific

average usage level on an average day. This controls for important customer characteristics,

like refrigerator efficiency, home insulation, and meal schedules, that the customer charac-

teristic data do not measure. Controlling for customer fixed effects captures the impacts of

all customer-specific characteristics that are unchanged throughout the experiment, so the

estimation becomes:

avgLoadit = ηTCustomeri + αTXw + δTTrtCustomeritXw + γTTit + κTTrtPeriodtX∗ +

νTCriticalPeriodtX∗ + βTPeakPriceitX∗ + ψTCriticalPriceitX∗ + εit

Where the variables are as above except that:

• Xw is the weather condition subset of X∗ for customer i on day t.

• Customeri is an array of one variable per customer where variable j ∈ 1..N is 1 for

customer i if i = j and is zero otherwise.

These estimation strategies create two objects of interest:

• The impact of the peak price is Ipeak =
∑
j∈{1,X∗} βjxj where βj is the coefficient

on the interaction of PeakPriceit with the jth customer characteristic and xj is the

average value of the jth customer characteristic conditional on PeakPriceit being 1.36

If we get evidence that these estimates are stable, then we can explore the impacts of

different subsets and weightings of the customer population.
35Faruqui and George use customer fixed effects in their papers [Charles River Associates, c, Faruqui and

George, 2005]. We can think of Herter [2006a]’s approach as being nearly equivalent to defining a fixed
effect dummy variable for each customer and then interacting it with a set of control variables that describe
characteristics of each day.

36For simplicity of discussion, I am treating the 1 as the first customer characteristic. The coefficient on
1 interacted with PeakPrice is the average impact of the peak price on consumption after controlling for all
of the observed-customer characteristics.
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• The impact of calling a critical price is quite similar, namely:

Icritical =
∑

j∈{1,X∗}
(βj + ψj)x′j

The differences are the addition of ψj the coefficient of CriticalPrice, and that we now

calculate x′j as the average characteristics on critical days.

2.3.2 Weighting the Data

This analysis weights the data so that the control and treatment groups have the

same geographic distribution as the state’s population of electric accounts for each day of

the sample. Further, I downweight observations from periods – roughly July, August, and

September – that we observed after the price change in both 2003 and 2004 so that the

sample represents a single six month summer season.37,38 This addresses the fact that, as

Charles River Associates [c, 22-32] describes, the sample:

1. Undersamples low use single family customers, while oversampling high use single

family customers and sampling apartments at roughly their population proportion.

2. Oversamples hot climate zones.

3. Includes July, August and September in both 2003 and 2004, but just May 2004, June

2004, and October 2003.

4. Includes all 24 summer critical days that can be called during two summers on this

12 event per summer rate. I interpret this as being two complete years worth of data.

There are no May or June critical days in either year. There are, however, three

October critical days in the first year.39

5. Has a sample that changes over time. Subjects come and leave.
37I do not down weight the first few days of July because we drop it for 2003. And I do not down weight

PG&E data from the month of August 2003 because missing weather data necessitated dropping it.
38Robustness checks show that weighting does not substantially affect the regression coefficients.
39There appears to be exactly one calendar day, August 27, that was a critical day in both 2003 and 2004.
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2.3.3 Possible implications of the selection problems

This project’s difference-in-difference approach compares the electric-use trajec-

tory of control customers to that of CPP customers. Selection problems can mean that we

are constructing the wrong counterfactual by using a treatment group that would have fol-

lowed a different trajectory than the control group even in the absence of dynamic pricing.

It is conceivable that selection bias could point in either direction:

• The people who opt in to CPP could be simply less sensitive to weather during

weekday afternoons. We should be concerned that this is the case because customers

who are weather-insensitive enough tend to save money on dynamic pricing. This

implies that the analysis is using behavior during the relatively mild month of June as

a baseline and then measuring impacts from treatment months that were, on average,

hotter. If the group that switched to CPP were already less sensitive to weather

changes and the June data did not contain enough variation to capture this difference

in sensitivities, then the model would overstate the impact of the change in prices.

• If the people who opt in to CPP tended to air condition only during very hot weather,40

then the customers’ might become much more weather sensitive during the hottest

months. This might give CPP customers observables, like average daily use values

or average consumption fixed effects, that would make them look like untreated cus-

tomers with smaller residences. Smaller control customers’ electric use would rise less

than theirs later in the summer. Therefore comparing CPP customers with smaller

control customers would understate CPP’s impact.

2.4 Results: Factors that Determine the size of Dynamic

Pricing’s impact

Tables 2.6 and 2.5 report results from four specifications based on the econometric

approach described in section 2.3. The regressions in tables 2.6 and 2.5 measure temperature

in cooling degree hours and cooling degree hours squared and force customers from every

region of the state to have the same relationship between temperature and electricity use.
40This kind of behavior will reduce weekday afternoon electricity use relative to use during other periods.

It makes them more likely to come out ahead on the new rates. Being extremely frugal with weekday
afternoon air conditioning is, however, not sufficient to ensure that a customer will pay less on CPP.
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Appendix K reports the results of an improved set of regressions that fit a more flexible

piecewise-linear spline to the relationship between temperature and energy use rather than

the rigid quadratic form.41 Further, they interact these splines with a variable that is 1 if

a customer is in climate zone 1 or 2 where air conditioning is rare and zero if the customer

is in a hotter climate.42 Future revisions of this document will likely further improve the

regressions in Appendix K and use those regressions instead of the quadratic regressions

throughout the document. The regressions are as follows:

1. Specification 1 uses just billing, geographic, and weather data to predict response. It

has the largest sample. Specification 5 is nearly identical, except that it uses splines

as described above.

2. Specification 2 expands specification 1 by controlling for factors like whether the

customer has central or room air conditioning, the number of people in the household,

and the number of bedrooms (a proxy for house size). The survey that provides these

variable is unavailable or incomplete for some customers, which reduces the sample

size. Specification 6 is nearly identical, except that it uses splines as described above.

3. Specification 3 adds interactions between temperature and whether the customer has

central air conditioning to specification 2.

4. Specification 4 adds “everything but the kitchen sink”, namely a large number of

survey variables, duration of participation category dummies, and person fixed effects

to specification 2. It does not, however, include the air conditioning-cooling degree

hour interaction terms from specification 3. This specification should should raise

a red flag if omitted variable bias drove the results above or if the results from the

first three cross-section specifications were not true in a fixed effects panel model.

Specification 8 is nearly identical, except that it uses splines as described above.

The difference-in-difference approach estimates impacts of dynamic pricing as the

coefficients on the interactions between the characteristics of the customer-day and the
41The piecewise-linear spline allows the relationship between temperature and energy use to change at

each member of a set of temperatures K. It estimates the additional impact of each degree above each “knot”
K by creating a variable of the form SplineCDHk = max{0,CDH−K}

42The quadratic regressions (Specifications 1-4 below) include controls that interact dummies for day
of week, calendar month, and year with quadratics of cooling and heating degree hours. The piecewise
regressions do not interact these dummies with the temperature splines out of concern that doing so by
adding more than 100 regressors would use too many degrees of freedom.
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dummy variables reporting that either the TOU peak price or critical prices was in effect

for that customer on that day. Hence tables 2.6 and 2.5 report just these interaction

terms. Every coefficient described in this section – unless explicitly noted otherwise – is

the interaction of a price dummy with a characteristic of the day or customer. Appendix

D reports the complete results from the regressions. Appendix E repeats the complete

results running the regressions on data from the two hottest climate zones, where summer

days above 90o are common and where more than 70% of customers have air conditioners.

Appendix K presents a single regression that estimates the interaction of temperature and

dynamic pricingly for climate zones 1 and 2 separately from those in zones 3 and 4. Hot

summer climates are typical of many parts of the US.43

2.4.1 The Benefits of Dynamic Pricing Grow as the Temperature In-

creases

Multiple sources of evidence find that dynamic pricing leads to bigger reductions

in electricity use on hot days. This is good, if perhaps unsurprising, news because dynamic

pricing aspires to dampen energy use, especially air conditioning use, during hours when

air conditioning demand makes electricity is scarce and expensive. The additional bene-

fits become evident when the temperature reaches something between 85 and 100 degrees

Fahrenheit. Air conditioning uses a great deal of electricity and causes demand to peak on

the hottest summer weekday afternoons. Thus an increase in dynamic pricing’s impacts

during hot weather is propitious. It creates a positive correlation between the program’s

reduction in electric use and the power’s wholesale price and marginal social cost that define

the value of those reductions. So climate control, largely air conditioning, probably drives

the increase in benefits from dynamic pricing during hot weather.

Graphs 2.2 and 2.3 suggest that the average use by control and treatment cus-

tomers are difficult to distinguish on days with fewer than 50 to 60 base-78o Fahrenheit
43Descriptive statistics about summer heat measured in Cooling Degree hours for cities around the US are

available at: http://www.ncdc.noaa.gov/oa/climate/online/ccd/nrmcdd.html That site suggests identifies
areas of the US that have total cooling degree days comparable to places in climate zone 4 such as Bakersfield
and Fresno and zone 3 such as Stockton and the Sacramento suburbs. (Sacramento’s municipal utility district
did not participate in the SPP, but PG&E assigned some of its Sacramento-area customers to a “Sacramento”
weather station.)
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Dependent variable: consumption on non holiday weekdays in
kW (kWh/h). Negative values indicate that dynamic pric-
ing customers used less power than comparable control customers.

Specification
1: Simplest
Diff in Diff

Specification
2: Adding
Survey
Variables

Specification
3: Adding
CAC*CDH
interac-
tions

Specification
4: Adds
person
FE’s;
controls

Critical Price in Effect
0.141 0.024 -0.024 0.497∗∗

( 0.097 ) ( 0.182 ) ( 0.176 ) ( 0.251 )
Critical Price in Effect * day after
critical price

0.052∗∗ 0.055∗∗ 0.037 0.009
( 0.025 ) ( 0.028 ) ( 0.028 ) ( 0.032 )

Critical Price in Effect * electric use,
kWh / day, summer 2002

-0.018∗∗∗ -0.020∗∗∗ -0.019∗∗∗ -0.010
( 0.005 ) ( 0.006 ) ( 0.006 ) ( 0.007 )

Critical Price in Effect * high ratio rate
customer.

0.217 0.256∗ 0.236 0.143
( 0.138 ) ( 0.153 ) ( 0.146 ) ( 0.108 )

Critical Price in Effect * cooling degree
hours 2-7pm

0.010∗∗∗ 0.007∗ 0.007 0.009∗∗

( 0.004 ) ( 0.004 ) ( 0.007 ) ( 0.005 )
Critical Price in Effect * cooling degree
hours squared (1000’s), 2-7pm

-0.110∗∗∗ -0.065 -0.074 -0.107∗∗

( 0.038 ) ( 0.041 ) ( 0.161 ) ( 0.044 )

Critical Price in Effect * central AC
. -0.218∗ -0.143 -0.219∗

. ( 0.114 ) ( 0.123 ) ( 0.129 )

Critical Price in Effect * room AC
. 0.296∗∗ 0.287∗∗ -0.114
. ( 0.124 ) ( 0.132 ) ( 0.162 )

Critical Price in Effect * cooling degree
hours 2-7pm * central AC

. . 0.000017 .

. . ( 0.003 ) .
Critical Price in Effect * 2-7pm squared
* central AC

. . 0.0000065 .

. . ( 0.00093 ) .
Critical Price in Effect * swimming
pool

. . . -0.289

. . . ( 0.196 )
Critical Price in Effect * cooling degree
hours 2-7pm * room AC

. . . 0.010∗∗∗

. . . ( 0.003 )
Critical Price in Effect * # kids under
5 in household

. . . -0.221∗∗

. . . ( 0.093 )
Critical Price in Effect * # people over
65 in household

. . . -0.223∗∗∗

. . . ( 0.085 )
Critical Price in Effect * customer
stayed in expt. throughout expt.

. . . -0.352∗∗

. . . ( 0.138 )
N 121408 101981 101981 77660
R-squared 0.4915 0.5020 0.5196 0.6380

Robust standard errors, clustered by customer in parentheses.
Significance: *=10% ** =5% ***=1%

Abbreviations: AC: air conditioning CAC: central air conditioning FE’s: fixed effects
Cooling degree hours (CDH) are base 78o F. Heating degree hours are base 65o F.

Table 2.5: The impact of just critical prices
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Dependent variable: consumption on non holiday weekdays in
kW (kWh/h). Negative values indicate that dynamic pric-
ing customers used less power than comparable control customers.

Specification
1: Simplest
Diff in Diff

Specification
2: Adding
Survey
Variables

Specification
3: Adding
CAC*CDH
interac-
tions

Specification
4: Adds
person
FE’s;
controls

TOU Peak Price in Effect
0.067 -0.107 -0.100 0.268

( 0.077 ) ( 0.139 ) ( 0.136 ) ( 0.197 )
TOU peak price in effect * day after
critical price

0.024∗ 0.030∗∗ 0.030∗∗ 0.017
( 0.013 ) ( 0.014 ) ( 0.014 ) ( 0.014 )

TOU Peak Price in Effect * electric
use, kWh / day, summer 2002

-0.004 -0.006 -0.005 0.005
( 0.004 ) ( 0.005 ) ( 0.005 ) ( 0.005 )

TOU Peak Price in Effect * high ratio
rate customer.

-0.011 -0.015 -0.010 0.018
( 0.039 ) ( 0.043 ) ( 0.044 ) ( 0.054 )

TOU Peak Price in Effect * cooling
degree hours 2-7pm

0.010∗∗∗ 0.009∗∗ 0.006 0.009∗∗

( 0.003 ) ( 0.004 ) ( 0.006 ) ( 0.004 )
TOU Peak Price in Effect * cooling
degree hours squared (1000’s), 2-7pm

-0.102∗∗∗ -0.078∗∗ -0.013 -0.106∗∗∗

( 0.033 ) ( 0.035 ) ( 0.135 ) ( 0.038 )

TOU Peak Price in Effect * central AC
. -0.033 -0.014 -0.031
. ( 0.079 ) ( 0.081 ) ( 0.086 )

TOU Peak Price in Effect * room AC
. 0.110 0.118 -0.086
. ( 0.084 ) ( 0.085 ) ( 0.107 )

TOU Peak Price in Effect * cooling
degree hours 2-7pm * central AC

. . -0.000022 .

. . ( 0.002 ) .
TOU Peak Price in Effect * cooling
degree hours squared * central AC

. . -0.00044 .

. . ( 0.00084 ) .
TOU Peak Price in Effect * swimming
pool

. . . -0.279∗

. . . ( 0.148 )
TOU Peak Price in Effect * cooling
degree hours 2-7pm * room AC

. . . 0.010∗∗∗

. . . ( 0.003 )
TOU Peak Price in Effect * # kids
under 5 in household

. . . -0.106

. . . ( 0.072 )
TOU Peak Price in Effect * # people
over 65 in household

. . . -0.117∗∗

. . . ( 0.057 )
TOU Peak Price in Effect * customer
stayed in expt. throughout expt.

. . . -0.193∗∗

. . . ( 0.089 )
N 121408 101981 101981 77660
R-squared 0.4915 0.5020 0.5196 0.6380

Robust standard errors, clustered by customer in parentheses.
Significance: *=10% ** =5% ***=1%

Abbreviations: AC: air conditioning CAC: central air conditioning FE’s: fixed effects
Cooling degree hours (CDH) are base 78o F. Heating degree hours are base 65o F.

Table 2.6: The impact of just TOU peak prices



www.manaraa.com

34

cooling degree hours (CDH)44,45. The graphs suggest that dynamic pricing customers use

less power at temperatures beyond that threshold and that these savings grow as the tem-

perature increases. Graph 2.4 shows the pretreatment relationship between temperature

and use. It and graph 2.3 illustrate the regressions’ identification strategy which compares

differences-by-temperature between the pretreatment and the period when CPP was in

effect.

Tables 2.6 and 2.5 report qualitatively similar results from regressions. The re-

gressions and graphs in Appendix K report a more flexible and accurate estimate of this

relationship. The regressions in the main text estimate a quadratic relationship between

impact and temperature, while Appendix K estimates a piecewise linear relationship and

presents pictures of non-parametric estimates as well. The most authoritative evidence

available comes from figures K.1 through K.5 in Appendix K. Both the regressions re-

ported here and the work in appendix K suggests that the benefits of dynamic pricing are

small and insensitive to heat at low temperatures. The quadratic regressions report that

temperature-driven benefits were near zero below an afternoons with an average tempera-

ture with a point estimate that ranges from 88o to 100o F (i.e. 50 to 110 base-78 cooling

degree hours [CDH]). Benefits appear to grow rapidly as temperatures rise beyond that

point. Appendix K suggests that benefits grow rapidly in Zones 3 and 4 as the tempera-

ture rises from roughly 90oF to about 98oF , before leveling off or even beginning to shrink

slightly. This pattern is consistent with customers increasing their thermostat settings

significantly and perhaps with them attempting to precool their homes. The quadratic

findings suggest that an increase in the average temperature from 98o to 99.9o (an increase

of 1000 CDH2) reduces the CPP group’s load by .13 kilowatt (kW) relative to the control

group’s load46, saving .67 kWh per customer per afternoon.
44The number of cooling degrees hours is the number of degrees that the temperature is above a base level

during each hour. This paper works with a base of 78o Fahrenheit and takes a sum over the 5 hours between
2 PM and 6:59PM. In other words, it is

∑6PM

T=2PM
max{0, temperaturet − 78} So 50 (60) CDH probably

reflects an afternoon that had an average temperature of 88o (90o) F.
45I, in contrast to Faruqui and George [Charles River Associates, c, 41], find that using base 78oF CDH

gets better fitting results than does using base 72oF CDH presumably because it avoids trying to fit the
same quadratic relationship to the change from 75o to 76o in the Bay Area as it does to the change from 95o

to 96o in the desert. Working with base-78o CDH creates more zeros in temperate climate zones where air
conditioning is rare than would working with base 72o or 75o CDH. Further, a great deal of air conditioning
is likely to be idle at temperatures between 72o and 78o, but active at higher temperatures.

46Electric load, measured in kilowatts (kW) is a measure of the rate of electrical use. A flow of one kW
sustained for an hour is a kilowatt hour (kWh). The rate of savings in kilowatt hours per hour is expressed
here as kW, but elsewhere in the literature [Herter et al., 2007, Charles River Associates, c] as kWh/h. In
this paper, I repeatedly multiply the flow of average impacts per hour that are measured in kW by five to
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Figure 2.2: These figures plot the daily average hourly total electricity usage per customer between
2 and 7PM as a function of how hot the day was. They show that the difference between the average
use of treatment and control customers is bigger on higher temperature days during the treatment
period. Each point reflects the average use of the few dozen customers who are closest to the weather
station in each graph’s title. The graphs measure temperature as the sum of the base 78oF cooling
degree hours between 2 and 7PM.
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Temperature vs. Usage
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Figure 2.3: These graphs show the relationship between heat and average daily use for
customers of one weather station in each of the four climate zones. Notice several important
aspects of the identification: The vast majority of days with more than 80 base-78oF cooling
degree hours (i.e. days that have average 2-7 PM temperatures of more than 94oF ) in the
sample come from climate zones 3 and 4. Indeed, many days in the temperate climate
zones were below 78oF all day and thus have zero cooling degree hours. Temperate zones
1 and 2 are less sensitive to temperature because fewer residences in those zones have air
conditioners. This graph and figure 2.2 add to important findings from Herter et al. [2007].
First nearly all of the impacts of critical events on days that are hotter than 95 degrees
appear to come from climate zones 3 and 4. Second these figures, especially figure 2.2,
suggests that the substantive importance of response to the TOU peak price signal on hot
days is on par with the substantive importance of the additional response to the critical
price signal. These graphs are not sufficient to draw conclusions, but show the likely origin
of the findings below.
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Figure 2.4: Identifying any pretreatment (i.e. weekdays June 1- June 17, 2003) differences.
These graphs show the relationship between heat and average daily use for customers of
one weather station in each of the four climate zones. The limitations of the identification
strategy for this data set become clear here. There are only 12 pretreatment days, while
there are roughly 200 treatment days. June is cooler than later months so the example
weather station in foothill Zone 2 (central valley zone 3) tops out at about 50 (100) base
78oF cooling degree hours, while the same weather station has days with up to 80 (120)
cooling degree hours later in the summer.
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The quadratic estimate yields two coefficients, reporting the impact of changes to

the number of CDH and of the number of CDH2. The linear term dominates on cooler days

when there are small numbers of CDH, but the number of CDH2 explodes as the temperature

rises. Specifications 1, 2, and 4 show that CDH squared has a negative and statistically

significant impact during for customers experiencing TOU peak prices. The linear CDH

term is small, positive in every specification, and often statistically significant. For example,

specification 1 reports that, relative to the time-invariant control group, dynamic pricing

customers increase use by .01 kW (SE: .003) for every increase of 1 CDH and decrease use

by .102kW (SE: .033) for every increase of 1000 CDH2.

The difference-in-difference results from this work and from Appendix K seem most

consistent with the interpretation that estimates found that treatment customers used, on

average, far less power during moderately high temperature pretreatment afternoons than

did the control group. The small size and strange structure of the pretreatment sample

seem to be causing real problems here. The moderately high temperature pretreatment

data come from a few weather stations on a few days when some customers’ meters were

being activated. These factors are likely to have created idiosyncratic correlations between

treatment status, temperature, and use in the pretreatment data. Then, this difference

all but disappeared during the treatment period, yielding difference-in-difference estimates

that imply that the treatment caused an increase in power use during these moderately

hot conditions. Regressions that consider only the treatment period difference between the

control and treatment group estimates do not corroborate this finding and yield impacts

that are substantively small and temperature insensitive below 60 cooling degree hours

per afternoon. The treatment-period-only difference finding is a much more intuitively

appealing pattern. 47

The point estimates of the relationship between temperature and the impact of

critical prices are qualitatively quite similar, but the critical price impacts are only statis-

tically significant in specifications 1 and 4. It is unsurprising that the critical price’s effect

is less precisely measured because the summer data set contains 24 critical days, but more

than 170 TOU peak days.

get the average impact per afternoon peak period in kWh.
47The positive sign on the linear CDH term might achieve the best quadratic fit to a relationship where

temperature has almost no effect at low temperatures and a very significant impact at high temperatures.
The positive linear term thus keeps estimated impacts close to zero at low temperatures while allowing the
quadratic term to fit the significant relative reductions in use at high temperatures. It could, less plausibly,
correctly indicate that dynamic pricing is counterproductive on cool days.
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% customers who have central air conditioning
climatezone

housetype 1 2 3 4 all
apartments 3.3 24.6 57.6 80.6 32.5
High use single family 3.8 49.2 82.2 97.2 62.7
Low use single family 5.0 24.4 71.5 63.5 41.6
all 4.1 29.7 71.4 77.0
% w/ any cooling technology: room, central or building-wide AC, evaporative cooling
all 12.8 47.5 88.4 94.7

Table 2.7: Air conditioning and cooling technology by climate zone and house type. More
than 70% of climate zones 3 and 4 customers have central air conditioning and more than
88% of them have some kind of cooling technology, with the vast majority of those paying for
the electricity for either central or room air conditioners. Almost all of the air-conditioning-
intensive, very hot weather takes place in these zones as well.

Controlling for the Interaction of Air Conditioning and Heat

Specification 3 adds interactions between central air conditioning ownership, CDH,

and CDH2. This specification has several unexpected results:

• The interactions between central air conditioning ownership, CDH, and dynamic pric-

ing are fairly precisely estimated zeros. We fail to reject the joint hypothesis that the

impact of central air conditioning ownership, and the interaction of central air condi-

tioning ownership with CDH and CDH2 are all zero (p=0.96).

• The standard error on the interactions between cooling degree hours squared with the

TOU peak price and critical peak price both increase by a factor of four. This renders

the point estimates of their coefficients statistically insignificant.48 We can, however,

reject the hypothesis that the base effects of CDH and CDH2 are both zero (p=0.04).

• The point estimate of the interaction of the TOU peak price with cooling degree hours

squared falls significantly toward zero.

Table 2.7 suggests that some of these unexpected results might come from the

fact that we are identifying the effect of dynamic pricing on days when temperatures are

above 90o from a population that overwhelmingly has air conditioning, typically, central

air conditioning. Nearly all of the days with the highest CDH2 values, which matched to
48Adding more control variables did not restore statistical significance, nor did adding person fixed effects.
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the highest dynamic pricing impacts came from climate zones 3 and 4. More than 70% of

those customers have central air conditioning and more than 88% of them have some kind

of cooling technology.

The survey collects no data about the size, age, or efficiency of air conditioners

or the quality of insulation on a house. This technical information would be valuable to

researchers, but few residents know it. So it may be that the survey variables fail to capture

the information about air conditioning equipment we need to understand how differences

in equipment and controls affect the price sensitivity of energy use.

Appendix Tables 2.8 and 2.9 show that when we split the customers into low-

use single family / apartment and high-use single family halves, the point estimate of a

strong negative relationship between cooling degree hours and dynamic pricing benefits

comes back among the high use single family customers. This negative impact is, however,

quite imprecisely estimated. Appendix E gets the same qualitative result when we restrict

the regression universe to climate zones 3 and 4. This set of findings has three possible

interpretations:

• High use (hot climate) customers are generally heavy air conditioning users, so the

high use (hot climate) and low use (temperate climate) customers could be generating

substantively different results.

• The new point estimates with even larger standard errors could be statistical flukes.

• The high use subset of the customers as a whole, including the high use/hot climate

customers bear the brunt of the selection problems discussed above. Thus, the selec-

tion problems that are more pronounced in these two subsets might be driving the

finding that the customers in them responded more to dynamic pricing during high

temperature periods.

Accumulated Heat

Specification 4 controls for the number of cooling degree hours on each of the three

previous days and finds that dynamic pricing customers use less power in sustained heat

than do customers on time invariant rates. These savings of .001 kW per lagged CDH can

be substantively quite important, because customers experiencing a Central Valley “heat

storm” may have experienced 100 or more cooling degree hours on each of the three previous
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days. This translates to an average savings of .2kW each hour.

2.4.2 The Effect of Customer Size on Response to Dynamic Pricing

The simple regression specifications in 1, 2, and 3 find that bigger customers

respond more to critical price signals. The 75th-percentile customer used 12.7 kWh/day

more than the 25th percentile customer in Summer 2002, and the regression coefficients

imply that this increase translates to a savings of roughly 1.2kWh per critical afternoon (or

.24 kW). Specification 4 adds many more controls and reduces the point estimate by about

half, which renders the impact statistically insignificant.49 We get smaller, statistically

insignificant point estimates from these three specifications when the TOU peak price is in

effect.

This finding is important because utilities have billing data, but often do not know

the demographics or appliance holdings of each household. This finding means that utilities

can target high-use customers knowing that they will respond more on a per-account basis to

critical prices than lower use customers. The results also suggest that the overall electricity

use variable serves as a proxy for some of the ability to respond that more detailed data

would uncover.

2.4.3 Other Dynamic Pricing Impacts

• On critical days people with central air conditioners conserve more than do comparison

customers who do not pay for the electricity for compressor-based air conditioning.50

The comparison groups includes people who have no air conditioning, those who have

evaporative cooling, and those who have building-wide air conditioning provided as

part of their rent. Further, people with room air conditioning responded less to both

peak and critical price signals as the number of cooling degree hours rose.

• Customers use more power on a day with ordinary, TOU peak prices after a critical

event which is consistent with delaying optional activities like drying clothes and
49The point estimate and standard error are unaffected by the addition of removal of the person fixed

effects used in the reported regression specification 4. In other words, all the action comes from adding more
control variables.

50There is some evidence at the p=.05 level that people with room air conditioning conserve less in
response to critical price signals, but the sign reverses as we add more controls and person fixed effect. The
sign reversal suggests that we may be picking up impacts of things like building age, building size, or number
of occupants.
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running the dishwasher.51,52,53

• There is evidence that people with swimming pools reduced peak electricity use more

in response to dynamic pricing than other customers did. Swimming pool pumps

use considerable energy and it is easy to set their timers to run them off peak. The

point estimates are substantively quite big at about .28 kW or 1.5 kWh per day. This

impact is imprecisely estimated, but is statistically significant with a similar coefficient

in a specification that adds the variables considered for this section to specification 2.

That specification also corroborates the next two findings.

• Households responded more for each member above the age of 65 than for household

members between the ages of 5 and 64. If we control for income, the sign remained

the same and the relationship remained statistically significant on critical days but

had a p-value of 0.14 on ordinary days.54

• Customers who stayed in the experiment to the end responded roughly 1 (1.8) kWh /

day more than those who left early during hours when the TOU-peak (critical) price

was in effect.

2.4.4 Comparing the Effects of Different Dynamic Rates

The high ratio rate charged higher prices, but the pooled sample yields no statis-

tically significant evidence that they led to greater conservation during peak and critical

periods. Most regressions find that the TOU peak period and critical price period use re-

ductions by customers on high ratio rates differ from the reductions by low-ratio customers

by a statistically and substantively insignificant amount.55 The regression results in tables
51There is some evidence that critical days after prior critical days experience a similar rebound, but these

findings get weaker as we add more controls and as we subdivide between high and low use customers as a
robustness check

52It is worth noting, however, that most regressions find that customers use more power on a critical day
before a second critical day. This goes away in the results in Appendix K, which suggests that it came from
an insufficiently flexible functional form for the temperature relationship.

53Herter [2006a] makes a similar finding.
54About 40% of households with at least one senior reported being in the lowest income category, while

only 26% of other households did. However, the income data that we have may be a poor measure of the
true spending power of retirees who may be more likely to have savings that far outweigh their incomes.

55We make this finding during critical periods via a slightly circuitous route. The regressions find that
high ratio customers use significantly less power than low ratio customers during critical periods that they
did not participate in. This typically happens when they could not be successfully reached by the automated
telephone notification system. The CPP group included roughly 0.05% of the state’s 8.3 residential utility
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2.8 and 2.9 and appendix F find modest evidence that high-ratio, high-use single family

customers responded more to the TOU peak price than did similar low-ratio customers.

The customers in this sample got automated phone calls the day before each critical

price went into effect, which may have increased customer response to the high price. This

design feature means that the SPP dataset is a good source of evidence about how customers

react to a CPP program with telephone notification, but a poor source of evidence about

how customers would react to price changes alone.

These findings are not easy to reconcile with phone calls being irrelevant and there

being a single, gently sloping (e.g. continuous elasticity of substitution) demand curve in

customers’ heads. These findings are consistent with customers having demand curves with

regions that are near vertical. These curves would mean that a change from 20 cents to 70

cents makes a big difference in quantity demanded, but that a change from 20 to 25 or 50

to 70 cents does not make much of a difference. These patterns are also consistent with

customers thinking about CPP as designating times to “use power normally,” “conserve a

little,” and “conserve a lot.”

2.4.5 Robustness to Selection Bias

Specifications 1, 2, and 3 find that treatment customers were using less peak power

during the pretreatment period by about .07 kW which is significant at the 4-6% level in

each of the specifications. Specification 4 uses customer fixed effects instead of identifying

coefficients for preexisting differences between the control and treatment groups. These

differences are not particularly disturbing if they reflect preexisting differences. If these

savings come from premature response, then the results reported here understate the true

value of dynamic pricing.

Evidence from Splitting the Dataset

There is evidence that the whole sample suffers from a selection bias problem

among its high-use, single family customers. One way to explore whether selection bias is

driving the results is to divide the sample into the suspect high use, single family customers

accounts, so customers were unlikely to learn of the event through a channel other than the direct notification.
They return to the CPP group average when they are successfully called. This is probably a statistical artifact
despite being nearly statistically significance at the 10% level.
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and the more pristine low-use single family and apartment customers. Tables 2.8 and 2.9
56 and Appendix F report the results from taking this approach.

The results from the whole sample, just apartments / low use single family, and

just high-use, single family are all qualitatively quite similar to each other. In almost all

cases, the point estimates of statistically significant findings from the section above retain

their signs and magnitude. The results are less precisely estimated, which is not surprising

given that we have split the sample into high use (45%) and low-use / apartment (55%)

halves.57

2.5 Estimates of the Total Impact of Dynamic Pricing

The section above shows how a variety of factors affect dynamic pricing’s electricity

use. This section aggregates them to calculate the average impact of dynamic pricing for

customers in important scenarios.

A disproportionate part of the value of dynamic pricing comes from days when

electricity is scarce, creating high energy prices58. Electricity demand is closely correlated

with temperature and most scarcity conditions take place on days when high temperatures

create extreme demand.59 Further, the results above find that the impact of dynamic pricing

is quite sensitive to the temperature of the day. This section assigns days to bins by their

peak 2-7 PM California Independent System Operator (CAISO) control area electric load60,

determines the population weighted average temperature in each bin, and then calculates

the average impact of dynamic pricing for the temperatures from each bin. It disaggregates
56The results in Tables 2.8 and 2.9 are chosen to support the discussion in section 2.4.1. Appendix F

reports complete results from running all four specifications.
57Premature response that inadvertently “treated” CPP customers with the perception that they could

save money by reducing peak use during the pretreatment period would tend to cause these estimates to
understate the impacts of dynamic pricing. A useful way to bound the magnitude of this bias would be
conceive of the SPP as having treated weekday afternoon hours with higher prices. We can then repeat the
regressions using weekend afternoon consumption as the “untreated” period instead of early June weekdays.
Control group weekend afternoon use turns out to be a very strong predictor of control group weekday
afternoon use. This approach would tend to overstate the impacts of the SPP because 1) customers will
shift laundry and other major appliance use from peak periods to weekend afternoons and 2) CPP treats
weekend afternoons with prices slightly lower than the time invariant price.

58See e.g. Borenstein [2005a] for an extended discussion of this
59Vacation patterns are also important: people who are in town use more power, but are more able to

respond to telephone-based critical peak signals. Future revisions to this work could consider vacations.
60The absolute daily peak took place between 2 and 7PM on 88% of weekdays during the June -October

2003 and May-September 2004 experiment period. Further, in 2003 and 2004, the absolute peak took place
between 2 and 7PM on every day in July, August, and the first half of September.
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Specification 2: Sur-
vey Variables

Specification 3:
CAC*CDH inter-
actions

Low
Use/Apt.

High Use Low
Use/Apt.

High Use

TOU Peak Price in Effect
-0.134 -0.183 -0.148 -0.063

( 0.156 ) ( 0.377 ) ( 0.154 ) ( 0.363 )
TOU Peak Price in Effect * day
after critical price

0.042∗∗∗ 0.012 0.041∗∗∗ 0.013
( 0.016 ) ( 0.030 ) ( 0.015 ) ( 0.030 )

TOU Peak Price in Effect * elec. use,
kWh / day summer ‘02

-0.003 -0.007 -0.002 -0.007
( 0.008 ) ( 0.011 ) ( 0.008 ) ( 0.011 )

TOU Peak Price in Effect * high
ratio rate customer.

0.034 -0.170∗ 0.040 -0.165∗

( 0.046 ) ( 0.097 ) ( 0.047 ) ( 0.096 )
TOU Peak Price in Effect * cooling
degree hours 2-7pm

0.006 0.013∗∗ 0.00036 0.020∗

( 0.004 ) ( 0.006 ) ( 0.006 ) ( 0.012 )
TOU Pk. Price in Effect * cooling
degree hrs squared (1000’s), 2-7pm

-0.071∗ -0.092 0.070 -0.204
( 0.038 ) ( 0.064 ) ( 0.133 ) ( 0.292 )

TOU Peak Price in Effect * central
AC

0.030 -0.017 0.043 0.012
( 0.087 ) ( 0.175 ) ( 0.091 ) ( 0.171 )

TOU Peak Price in Effect * room
AC

0.129 0.170 0.143 0.156
( 0.094 ) ( 0.167 ) ( 0.095 ) ( 0.163 )

TOU Peak Price in Effect * cooling
degree hours 2-7pm * central AC

. . -0.00013 -0.003

. . ( 0.003 ) ( 0.005 )
TOU Pk Price in Effect * cooling
degree hrs 2-7pm squared * central AC

. . -0.00089 0.00067

. . ( 0.00081 ) ( 0.002 )
N 54446 47535 54446 47535
R-squared 0.3715 0.4331 0.3964 0.4436

Robust standard errors, clustered by customer in parentheses.
Significance: *=10% ** =5% ***=1%

Cooling degree hours are base 78o F. Heating degree hours are base 65o F.

Table 2.8: The impact of TOU Peak pricing when we separate apartment / low use single
family customers from high use single family customers
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Specification 2: Sur-
vey Variables

Specification 3:
CAC*CDH inter-
actions

Low
Use/Apt.

High Use Low
Use/Apt.

High Use

Critical Price in Effect
-0.093 0.389 -0.189 0.470

( 0.210 ) ( 0.467 ) ( 0.206 ) ( 0.451 )
Critical Price in Effect * day after
critical price

0.048 0.071 0.033 0.055
( 0.031 ) ( 0.058 ) ( 0.031 ) ( 0.058 )

Crit. Price in Effect * elec. use, kWh
/ day summer 2002

-0.015 -0.020 -0.012 -0.020
( 0.011 ) ( 0.012 ) ( 0.011 ) ( 0.012 )

Critical Price in Effect * high ratio
rate customer.

0.280 0.190 0.238 0.275
( 0.173 ) ( 0.216 ) ( 0.162 ) ( 0.209 )

Critical Price in Effect * cooling
degree hours 2-7pm

0.004 0.012 0.002 0.020
( 0.005 ) ( 0.007 ) ( 0.007 ) ( 0.014 )

crit. price in effect * cooling degree
hours squared (1000’s)

-0.058 -0.092 -0.010 -0.251
( 0.046 ) ( 0.074 ) ( 0.163 ) ( 0.330 )

Critical Price in Effect * central
AC

-0.102 -0.545∗∗ -0.040 -0.272
( 0.127 ) ( 0.227 ) ( 0.139 ) ( 0.250 )

Critical Price in Effect * room AC
0.219∗ 0.534∗∗ 0.224 0.520∗∗

( 0.128 ) ( 0.248 ) ( 0.136 ) ( 0.248 )
crit. price in effect * cooling degree
hours 2-7pm * central AC

. . -0.00074 -0.005

. . ( 0.003 ) ( 0.005 )
Critical Price in Effect * CDH
2-7pm squared * central AC

. . -0.00035 0.001

. . ( 0.00092 ) ( 0.002 )
N 54446 47535 54446 47535
R-squared 0.3715 0.4331 0.3964 0.4436

Robust standard errors, clustered by customer in parentheses.
Significance: *=10% ** =5% ***=1%

Cooling degree hours are base 78o F. Heating degree hours are base 65o F.

Table 2.9: The impact of critical prices when we separate apartment / low use single family
customers from high use single family customers
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the top end of the load distribution, because high demand days are likely to yield the

greatest benefits and will generally be of the greatest practical importance.

2.5.1 Summer Season Weather and Load Patterns in 2003-04

Facts about California’s 2003-04 weather, population, and electrical demand are

useful in understanding the results below. The SPP assigned each customer to the four

climate zones presented on a map at Charles River Associates [c, 22]. This section takes the

SPP data that assigns each customer to one of the 58 weather stations around the state listed

in Charles River Associates [d, 18-19] and uses them to calculates population-weighted tem-

peratures. Appendix G describes this paper’s population-weighted temperature calculation

methodology.

1. Statewide population-weighted base-78 cooling degree hours (CDH) have a very strong

positive correlation with electricity use. Figure 2.6 illustrates this.

2. About 6.5 million of the three utilities’ 8.3 million accounts are in climate zones 2

(“foothills”) and 3 (Central Valley). The weather in these zones changes more over

the course of a summer than does the weather in the other two zones (which tend to be

fairly cool and quite hot most of the time, respectively). This combination of variable

weather and large population mean that zones 2 and 3 appear to drive the variation

in electricity consumption in California. In particular, roughly 1 in 4 weekdays in

2003-04 had demand of 40 GW or more. All but one of these days had population

weighted 2-7 PM afternoon temperatures averaging more than 85o (35 CDH) in zone

3. By contrast, roughly 57% of all days May through October had fewer than 35 CDH

in zone 3.

3. Hot weather in foothill Zone 2 has a bigger impact on state-wide, population-weighted

CDH than it does on electrical load because zone 2 has a large population, but only

about 30% of these accounts have weather-sensitive central air conditioning, while

more than 70% of customers in zones 3 (central valley) and 4 (desert) do. Figure 2.5

illustrates this relationship.

4. Climate zone 4 (desert) is quite hot for very extended periods of time but has the

smallest population. More than 50% of days during the experiment’s summer-rate

months of June - October 2003 and May-September 2004 had more than 60 CDH
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there, indicating that the average afternoon temperature was at least 90o between 2

and 7PM.

5. Climate zone 1 (the coastal fog belt) is generally quite cool, with a few warm days.

6. Quite high demand days tend to reflect a confluence of unusually hot weather in the

hot inland zones 3 and 4. The two highest demand days were also unusually hot in

zone 2.

7. Appendix H further details these patterns by providing tables of the distribution of

cooling degree hours by climate zone.

8. Twelve of the SPP’s summer-season critical days were called during days with peak

electricity demand in the top 10% of all 2-7 PM CAISO-region summer peaks. These

critical days are probably fairly representative of the critical days that would have

been called during 2003-04 had the SPP been run to minimize the costs of the energy

system. The SPP was also very consciously an experiment. It thus called the other

12 critical days during periods when energy was not particularly scarce to explore

how customers would react to price signals during cooler conditions and whether

price signals could be used to manage scarcity created by generation or transmission

problems that might coincide with a mix of temperate weather in some regions and

extreme weather elsewhere. Thus, they called two critical events in October on days

with between 30 and 32 GW of peak load, putting these days’ peaks between the

10th and 20th percentiles of all summer season peaks. The remaining 10 critical days

ranged from the 40th to 90th percentile of demand, with 6 called in July, August, and

September on days between the 70th and 80th percentiles of the demand distribution.

They left enough of the hottest, highest demand days non critical to allow us to

estimate the impacts of both TOU peak and critical prices under the hottest conditions

seen in 2003-04.

2.5.2 The experiment period lacked extremely hot days

The SPP ran during two years that lacked the kind of extremely hot days that tend

to create extreme demand peaks. This limits our ability to explore the impacts of dynamic

pricing during the truly unusual demand events when reductions in power demand have
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coordinate (a day with a single population-weighted average CDH) has an entry for each of
four zones with x-coordinates indicating the population-weighted average temperature. The
very top entry makes this clear. This graph includes both weekdays, holidays, and weekends.
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the 1 variable regression of each zone’s CDH on load. Zones 3 and 4 fit quite well; zone
2 shows significant signs of omitted variables bias stemming from the correlation between
temperature there and temperature in hotter neighboring zones. The omitted variables bias
in zone 1 was so severe that the line is uninteresting. The zone 1 line is thus not displayed
here.
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the greatest benefits.61 The California Independent System Operator (CAISO) declares a

Stage 1 emergency when it does not have enough capacity to meet standards about keeping

the system robust to equipment problems, a stage 2 emergency when shortages force it to

ask customers (typically large industrial facilities) on interruptible contracts to stop using

power, and a Stage 3 emergency when shortages lead to rotating blackouts. The CAISO

declared no summer season Stage 1, 2, or 3 electrical emergencies during the CPP treatment

period.62 By contrast, CAISO declared emergencies on six summer-season days in 1998 and

three in 2006. Four of the 1998 emergencies reached stage 2, as did one in 2006. The Stage

2 emergency came when record setting heat hit California, especially the heavily populated

climate zones 2 and 3 on July 24, 2006.[CAISO, a,b] Another way to see the striking

absence of extreme conditions during summer 2003-04 is to examine peak demand. The

99th percentile demand in a pooled sample of 2003 and 2004 was almost indistinguishable

from the 99th percentile of demand in 2006, but CAISO peak demand was 50.2 GW at

4PM on July 24, 2006, which eclipsed the 45.6GW 2-7 PM peak in 2003-04.

This limits our ability to explore the impacts of dynamic pricing during the truly

unusual demand events when reductions in power demand have the greatest benefits.63

By contrast, record setting heat hit California, especially the heavily populated climate

zones 2 and 3, in July, 2006. Record demand caused a Stage II Power Emergency on July

24, 2006. The 99% percentile demand in a pooled sample of 2003 and 2004 was almost

indistinguishable from the 99% percentile of demand in 2006, but CAISO peak demand was

50.2 GW at 4PM on July 24, 2006, which eclipsed the 45.6GW peak in 2003-04.

There is good reason to think that July 2006 got far hotter than any day in the

SPP sample, although the author does not have directly-comparable, population-weighted

weather data for 2006. It, however, is illustrative to note that record setting day had

76, 149, and 161 base-78 CDH at airports in San Jose (zone 2), Sacramento (zone 3), and

Fresno (zone 4) respectively. These are at least 30 CDH higher than the hottest population-

weighted weekday temperatures observed in zones 2-4 in 2003-04.
61Indeed, by far the highest statewide average CDH in 2003-04 was on Sunday, September 5, 2004 when

zones 1 and 2 got unusually hot. It had an unspectacular peak demand of 38.3GW because so much
commercial and industrial demand was offline for the weekend. As a Sunday, it is not in the impact analysis.

62A combination of extreme weather and an institutional meltdown led to power emergencies on 125 days
during the 2000-2001 crisis. This number seriously overstates the number of emergencies that would have
taken place had the institutions been functional.

63Indeed, by far the highest statewide average CDH in 2003-04 was on Sunday, September 5, 2004 when
zones 1 and 2 got unusually hot. It had an unspectacular peak demand of 38.3GW because so much
commercial and industrial demand was offline for the weekend. As a Sunday, it is not in the impact analysis.
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This paper pushes its exploration of the impacts of dynamic pricing during very

hot weather by creating a “synthetic” hottest TOU peak priced day that combines data from

the day with the highest population-weighted average temperature in each climate zone. It

repeats the process to create a synthetic hottest day from the sample of critical-priced days.

This yields nearly the hottest in-sample weather for each price level.64

2.5.3 Calculating Total Impacts from the Econometric Results Above

The estimation strategy described in Section 2.3 creates two total-impact objects

of interest:

• The impact of the peak price is Ipeak =
∑
j∈{1,X∗} βjxj where βj is the coefficient

on the interaction of PeakPriceit with the jth customer characteristic and xj is the

average value of the jth customer characteristic conditional on PeakPriceit being 1.65

• The impact of calling a critical price is quite similar, namely:

Icritical =
∑

j∈{1,X∗}
(βj + ψj)x′j

The differences are the addition of ψj the coefficient of CriticalPrice, and that we now

calculate x′j as the average characteristics on critical days.

Within this framework, I proceed as follows:

• I calculate the total distribution of non-holiday, weekday 2-7 PM peak loads in the

CAISO control area.

• Then I use this distribution to assign each day to a load-based bin. I create two sets

of bins differentiated by whether the CPP group was paying critical or TOU peak
64We could get marginally hotter in sample data by independently selecting the hottest day at each of 58

weather stations rather than the independently selecting the hottest day in each of 4 zones. Creating that
day will yield no great surprises. That day would would marginally increase estimated benefits by allowing
us to walk slightly further on a quadratic relationship that reports that benefits increase in temperature.

65For simplicity of discussion, I am treating the 1 as the first customer characteristic. The coefficient on
1 interacted with PeakPrice is the average impact of the peak price on consumption after controlling for all
of the observed-customer characteristics.
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afternoon prices.66 Appendix J provides descriptive statistics for each bin including

average temperatures and peak loads. The appendix shows that the high load bins

generally have higher temperatures, meaning that the resulting set of load-based bins

resembles the set of temperature based bins reported in Herter et al. [2007].

• Within each bin, I predict the impact of dynamic pricing for customers in each climate

zone and statewide, conditional on the temperature conditions being the average seen

within each load bin. I modify the framework above to make the average day-customer

characteristics, xj , the appropriate conditional mean for each climate-load bin. The

climate-zone-specific estimates use average customer-level characteristics within each

climate zone. All estimates calculate the average population-weighted weather from

days with loads in the current bin. The approach works as follows:

Ipricetype,bin,zone = ∑
j∈{CDH,CDH21,X∗}

βj(xj |price=pricetype, load in bin, account in zone) +

∑
j /∈{CDH,CDH21,X∗}

βj(xj |account in zone)

These temperature dependent point estimates generalize Faruqui and George’s and

Herter’s efforts to calculate a single point estimate of the CPP effect.

2.5.4 Point Estimates of the Impact of Dynamic Pricing: Summer Season

Weather and Load Patterns in 2003-04

Table 2.10 shows just how important the interaction of temperature and dynamic

pricing is:

• Customers in climate zone 4 (desert) show statistically and substantively significant

benefits from critical prices during all the high demand conditions. The credible point

estimates of the impacts range from 1.5/kWh to over 2 kWh per customer-day.
66Most critical events were called simultaneously for all customers statewide. There are a handful of

exceptions documented on Charles River Associates [c, 21]. This allows us to provide direct, if imperfect,
answers to crucial policy questions about the level of peak-use reduction that dynamic pricing will provide
under important statewide load scenarios. I categorize days when any customers paid critical prices as being
critical days. The noise in the link between load and temperature adds uncertainty beyond the standard
errors on the relationship between temperature and dynamic pricing benefits.



www.manaraa.com

54

Impacts of Critical Prices on avg. customer demand, kW
Specification 4: More controls and customer fixed effects

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide
0-40 0.085 -0.072 -0.135 0.069 -0.073
40-60 0.167 0.017 -0.076 0.031 -0.008
60-80 0.128 -0.052 -0.112 -0.219 -0.082
80-90 0.117 -0.057 -0.146 -0.302∗ -0.106
90-95 0.100 -0.064 -0.144 -0.419∗∗ -0.122
95-99 0.080 -0.019 -0.176 -0.453∗ -0.119
99-99.99999 0.156 0.013 -0.143 -0.335∗ -0.072
max load 0.216 -0.028 -0.205 -0.361∗ -0.106
maximum statewide CDH2 0.186 -0.079 -0.254 -0.414∗∗ -0.154
max zone-by-zone CDH2 -0.077 -0.207 -0.295 -0.672∗∗ -0.203

Impacts of TOU Peak Prices on avg. customer demand, kW
Specification 4: More controls and customer fixed effects

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide
0-40 0.017 0.045 0.004 0.074 0.022
40-60 0.030 0.064 0.047 0.003 0.039
60-80 0.017 0.053 0.029 -0.123 0.013
80-90 0.008 0.084 0.004 -0.233 0.006
90-95 0.018 0.070 0.005 -0.245∗ 0.0000032
95-99 0.021 0.110 0.027 -0.245 0.026
99-99.99999 0.119 0.088 -0.078 -0.263 -0.008
max load 0.119 0.088 -0.078 -0.263 -0.008
maximum statewide CDH2 -0.002 -0.041 -0.102 -0.411∗∗ -0.104
max zone-by-zone CDH2 -0.002 -0.041 -0.079 -0.603∗∗ -0.037

Table 2.10: Point estimates of the total impacts of dynamic pricing by climate zone and
load scenario. Significance: *=10% ** =5%
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• The point estimates of the TOU peak impacts in zone 4 are consistent with sub-

stantively important benefits, but the results are imprecisely estimated and often not

statistically significant.

• Climate zone 3 (central valley) shows similarly large reductions of .75 to 1.5 kWh

per critical customer-day and up to .35 kWh per TOU peak customer-day. These

estimates are imprecisely estimated during both critical and TOU peak periods.

• Climate zone 2 shows some response to dynamic pricing, but the benefits are not

as impressive as those in the hotter zones and are statistically insignificant. The

estimates find zero benefits for the average customer in climate zone 1.

To put these results in perspective, it is useful to note that the statewide average con-

sumption from 2-7PM weekdays was about .8 kW during the (moderately cool) early June

pretreatment period, although many high use customers consumed more than twice that

much.

These findings are qualitatively similar to those reported at Charles River Asso-

ciates [c, 61]. They find what may be slightly larger impacts in zone 4 and less impact in

zones 1 and 2. Section 2.4.5 explains that the difference-in-difference estimates find that

the treatment group was using less power on peak than was the control group. It treats this

as a preexisting difference between the control and treatment groups and subtracts the pre-

existing difference from the impact estimates, driving much of this difference in findings.67

If this preexisting difference is, in part, a premature response, then 2.10 understates the

benefits of dynamic pricing. The present paper’s findings have larger standard errors.

The nature of this estimation approach suggests some caution in interpreting these

results. This approach puts a single best fit quadratic function of dynamic pricing’s impact

as a function of temperature through data drawn from climate zones that differ strongly in

the prevalence of air conditioning. Future revisions of this work will use the regressions from

Appendix K which address these concerns. On the one hand, there is reason to think that

these estimates – especially those that are in the interior of the sample – are quite robust.

Appendix E drops zones 1 and 2 and finds that the weather sensitivity grows slightly,

but that the results are qualitatively nearly identical. Further, converting statewide data to

base-78 cooling degree hours means that we are largely fitting the temperature curve to data
67Faruqui and George’s use of before and after data with customer fixed effects will make a somewhat

similar correction.
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from the hotter, high-air-conditioning climates since cool days in cool climates have zero

base-78 CDH. However, a couple of results from extreme conditions should be approached

with caution:

• The point estimates suggest climate zone 4 (desert) offered up to 3.5 kWh of benefits

per customer-day during the most extreme weather within the sample. This is 50%

more benefits than they delivered during days that were just a few percentage points

lower in the load distribution. The figures in Appendix K strongly suggest that the

parabola we fit overstates benefits at the edge of the data cloud in order to get the

best global fit.

• The tables report that dynamic pricing caused a counterproductive increase in zone 1

(coastal fog belt) energy consumption during the state’s hottest days. These estimates

reflect the rigid functional form which put these days’ temperatures at the top of the

inverted-U shaped statewide relationship between temperature and dynamic pricing

impact. The control-treatment difference estimates shown in figures K.1, K.2, and K.4

in Appendix K suggest that benefits in Zone 1 are insensitive to temperature. The

lack of correlation between dynamic pricing impacts and temperature makes sense

because only 4.1% of customers in Zone 1 have air conditioning. The piecewise linear

difference-in-difference estimates in Appendix K shown in figure K.4 reveals a slightly

more complicated story: the treatment group shows large, imprecisely estimated sav-

ings during unusually hot conditions for Zone 1 during the pretreatment period. These

benefits largely disappear during the treatment period, yielding the strange difference-

in-difference impact estimate patterns that are typical of the Appendix K piecewise

linear estimates.

2.6 Comparing this approach to existing papers

The analysis that is closest to this paper’s work is the project reported in Faruqui

and George [2005] and the SPP final report [Charles River Associates, c]. The present

analysis makes some of the same choices as the prior papers to maximize comparability.

For example, I consciously emulate their use of the number of bedrooms as a proxy for

house size. The nature of the experiment and the available econometric tools drives this

paper to make similar choices to Faruqui and George like aggregating each weekday’s 5



www.manaraa.com

57

peak hours into a single observation and analyzing the summer and winter rate periods

separately.

The present paper, however, made the opposite choice about the strength of the

price sensitivity assumption. Faruqui and George’s papers use the SPP data to estimate

well-behaved continuous elasticity of substitution demand functions. If their assumptions

about demand function are correct then the parameters they estimate predict the implica-

tions of a wide variety of rates. The present paper makes weaker assumptions about the

nature of demand, meaning that it only attempts to describe the impacts of dynamic rates

similar to those used in the SPP. Its approach, however, allows explicit tests of some of

Faruqui and George’s assumptions.

• Faruqui and George’s approach fits a smooth demand curve with a single elasticity

to the data, which they plot on pages 62-66 of Charles River Associates [c]. Having

a single elasticity forces their estimates to find that customers on high ratio rates

respond more to peak and critical events than do customers on low ratio rates. Section

2.4.4 above and Herter [2006a] find evidence that the demand curve, rather than being

smooth, has some significant bends.

• Faruqui and George’s CES demand curves allow them to decompose response into two

parts:

1. substitution between peak and off peak periods as a function of the ratio between

the day’s afternoon peak and off peak period prices and

2. total daily use as a function of the day’s average price.

This means their estimates of the impacts of changes to peak and critical prices

are potentially too sensitive to the off-peak prices. Modeling total average use as

a function of a weighted average of the afternoon and off peak prices is a strong

assumption. For purposes of illustration, assume that the appropriate daily average

price is the simple average of the peak and offpeak price. Then their assumption

implies that customers would use the same total amount of power if the price were

10 cents during both periods or 19 cents on peak and 1 cent off peak. In other

words, the 19 cent price’s reduction in lighting and air conditioning usage would

have to be exactly offset by increases in electricity use spurred by the 1 cent offpeak
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price. As a practical matter, if customers reduced usage on critical days which have

significantly higher average prices, then this functional form forces the prediction that

high-ratio CPP customers increased their use on non critical weekdays relative to

control customers because the high ratio rate lowered average prices slightly [Charles

River Associates, c, 44].

• Faruqui and George deal with autocorrelation by first differencing their data. Thus,

much of their identification comes from changes to and back from critical prices. This

may also push them toward analyzing the impacts of customer-level characteristics

one at a time rather than many at a time, although they do not explain things this

way [Charles River Associates, c, 73]. The present paper deals with autocorrelation by

clustering observations by customer, so we can identify coefficients from all of the data.

Using the whole data set makes it easy to control for many customer characteristics

at once. Neither approach is perfect.

• The approach taken in the present paper controls for more customer characteristics

and controls for weather in a more flexible way.

The present paper’s regression approach is somewhat similar to Herter [2006a]

but extends its work by reporting the impacts of a variety of covariates and by reporting

standard errors that reflect uncertainty of the estimates both within each customer as well

as across customers. The present work extends the estimates of response by temperature

bin in Herter et al. [2007] by decomposing temperatures by climate zone and by using load

scenarios to guide the choice of temperature bins.

2.7 Policy Implications

The substantial diversity among the electric use patterns sensitivity to dynamic

pricing across climate zones suggests ways to improve the design of CPP programs. This sec-

tion discusses ways to focus the program on recruiting the right customers and on spurring

response when it will have the greatest value. This section explores the implications of

cross subsidies for the design of rates that can attract responsive customers. Customers’

apparent insensitivity to small changes of peak and critical prices has implications for rate

design.
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2.7.1 Recruiting and Targeting Customers

Some residential customers respond to dynamic prices far more than others. Util-

ities and regulators should use their limited marketing resources and limited program com-

plexity to maximize social benefits of dynamic pricing.68 We can maximize the reductions in

the cost of the electricity system by signing up the customers who offer the most beneficial

change in demand multiplied by the locational cost of power per unit of recruiting effort.69

The analysis here reports that this implies targeting large customers in hot climates if 1)

locational prices are the same everywhere and 2) the cost of recruiting customers of every

type is the same. Future work could consider whether and how differences in recruiting

costs and locational energy prices change the optimal targeting.

Targeting high value customers is particularly valuable if enrolling each customer

requires an expensive meter installation. Places like California are, however, deploying

advanced meters for customers on all rates.

One propitious implication of this analysis is that the most important variables in

determining which customers to target are regional temperature and a customer’s historical

use. These are both readily available to utilities.70

It may be useful to take a mid-term view that opt-in CPP is a stepping stone

toward making CPP an opt-out or default offering. Sound mid-term policy would demon-

strate that the plan can maintain long term customer satisfaction and effectiveness for a
68This follows from taking the standard microeconomic approach of using separate policy instruments to

meet efficiency and equity goals. The efficiency instruments make the net social benefits of the electricity
business as big as possible. Separate instruments can then achieve equity goals through transfers chosen to
minimize distortions. My choice of this approach explains many of the differences between my conclusions
about targeting and the conclusions in Herter [2006b]. If we believe that it is impossible to bundle separate
redistributive programs with dynamic pricing, then the approach taken in Herter [2006b] may be more
appropriate than the approach taken here.

69These customers also provide the greatest reduction in deadweight loss from the mispricing of electricity
under moderately strong assumptions about the nature of demand. If elastic customer e changes demand
more than each inelastic customer i for a change of prices from PL to the highest price, PH , then a sufficient
assumption is that the responsive customer decreases demand weakly more than the unresponsive customer
at any price in that interval. Formally ∂Qe

∂p∗ ≥
∂Qi
∂p∗ ∀p∗ ∈ [PL, PH ]. This global condition rules out the

possibility that less responsive customer actually had a big deadweight loss because they experienced a big
change in quantity demanded after a small price change from the status quo, while the more responsive
customer had a small deadweight loss because they experienced almost all of their change in demand in a
very narrow price interval near the new price.

70Targeting efforts might further explore how to use available data to identify the most valuable customers.
It is not clear how fruitful these efforts can be. I conjectured that big users in hot climates would be highly
responsive people with air conditioners. Operationalizing this conjecture by interacting summer 2002 kWh
/ day and summer 2002 kWh / day squared and with climate zone only increased R2 by 1%.
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diverse group of customers in all the climate zones that might be part of future programs.

Thus, a good midterm approach is a compromise between targeting highly responsive cus-

tomers to increase programs benefits while recruiting a customer pool that is representative

enough of the likely participants in future programs.

2.7.2 Benefits: primarily, not exclusively, air conditioning

The SPP’s Summer-Fall 2003 survey found that treatment customer’s report being

far less likely to use dryers and dishwashers during peak hours than do control customers.

Similarly, treatment customers report being much more likely to actively manage their use

of air conditioners. The electric use data find evidence of differences in air conditioning

management, but cannot detect differences in major appliance use. This probably reflects

the fact that major appliances consume a smaller share of energy than does air conditioning.

For example, shifting a once a week, 5 kWh dryer load from peak to off peak hours would

yield an average benefit of .2 kWh per hour over the 25 weekly peak hours. This magnitude

of impact is generally too small to be statistically significant in this analysis. Further, only

about 31% of the treatment group even owns an electric dryer, so we would expect that if

those 31% shifted an average of one whole load per week, that we would see about .06 kW

per customer decrease in peak load. But, if the SPP sample generalizes statewide, then

there are well over 2.5 million electric dryers in California, and that shifting a fraction of

a load per dryer per week from peak to off peak periods could lead to quite substantial

social savings. Post-SPP customer surveys indicated that most customers found it easy to

shift major appliance use, but that many found shifting air conditioning use difficult and

unpleasant [Lineweber, 2005, 5,14-15]. This suggests that rescheduling major appliance

use offers a greater deadweight loss reduction per kWh shifted than does changing air

conditioning habits.

2.7.3 Targeting seasons with the greatest potential social value

The largest potential social benefits from dynamic pricing appear to come from

providing good incentives during hot periods that make electricity scarce and customers

price sensitive. If there is a simple, feasible way to target weather conditions that seems

fair to customers, that approach may be compelling because some of the periods that create

the highest costs and greatest reliability problems are unseasonably hot days in the spring
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and fall when generators that are only online during the summer peak season are not

available.71 Advocates may suggest simpler rates with more muted peak-offpeak differences

that largely preserve existing cross subsidies and reduce the risk that customers will feel

inconvenienced or experience bill spikes. A potentially elegant compromise could impose

the largest difference between daily TOU peak and offpeak rates during the summer, while

allowing critical days to be called for unseasonably hot spring or fall conditions. A customer-

friendly presentation of year round incentives to shift dryer, dish washer, and pool pump

use into low cost hours is also a compelling program component.

2.7.4 Dynamic Pricing has Different Implications in Zone 3 and Zone 4

Customers who experience daily peak prices in places that are consistently hot

provide different benefits from customers on the same prices in places that are selectively

hot, but where heat tends to drive statewide demand peaks. Zone 3 (central valley) was

very hot72 an average of 3 weeks per summer while desert zone 4 was very hot an average of

10 weeks per summer. Thus, zone 3 dynamic pricing customers reduce peaks during many

(but not all) of the highest demand days when there is a significant chance of scarcity. Using

dynamic pricing to reduce peaks in zone 4 avoids the need to run a (not-so-inefficient) peaker

every afternoon for weeks on end. Dynamic pricing customers in zone 3 are more likely to

avoid the need a peaker that would run a few dozen hours a year.73

2.7.5 The Implications of Having Peak Prices Extend into the Evening

The SPP’s 2-7 PM peak period includes afternoon hours when many home are

empty and most people are at work. It also includes evening hours during which offices

empty as workers go home. Electricity prices are similarly high during both periods because

these are the hottest hours in the day and because people are cooling both the empty and the

full buildings. Good policy analysis should notice the differences in demand during these

periods. Empty buildings have more elastic demand and thus suffer greater deadweight
71This kind of scenario led to a 2 hour, 1000MW rolling blackout when temperatures went over 100o F

in Texas on April 18, 2006 [Quinn, 2006]. Interestingly, the critical days with the two highest statewide,
population weighted temperature took place on September 8 and 22, 2003.

72I define very hot as more than 60 CDH between 2 and 7 PM. A day with 60 or more CDH means that
temperature averaged at least 90oF for those hours.

73The present analysis has aggregated customers to the climate zone level. Practitioners might explore
whether a different set of boundaries is the best, practical way to identify areas where dynamic pricing will
have compelling benefits.
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losses from mispriced electricity.74

Other studies (e.g. Momentum Market Intelligence) gather more direct evidence

about customers opinions about early evening electricity use. The slice of the SPP data

discussed here offers a modest amount of evidence that extending peak prices until 7PM led

to enrollment resistance and attrition among people with electric stoves. It is also possible

that it drove resistance and attrition among customers who tend to get home early in the

evening. We would need to disaggregate afternoon from evening peak period SPP data to

get a clear sense of this. Doing so would give us a sense of how much demand elasticity

differs during these periods.

There is inconclusive evidence that some customers react to price increases by

considering whether to shut off their air conditioning altogether without considering the

possibility of making marginal changes to their electricity use. One customer justified the

choice to switch from CPP to a time of use (TOU) rate with no critical events:, “I live in

the desert, and it was hell not to turn on the air conditioner until 7:00 at night.” Another

customer who left CPP for TOU observed, “We roasted, it was horrible.”75 [Lineweber,

2005, 14] We need to find dynamic pricing programs that are more attractive to customers

than the time-invariant alternative regardless of whether customers are using neo-classical

or behavioral decision rules. Approaches with frequent high evening prices are likely to be

less attractive to customers unless customers understand that the high evening prices allow

for lower prices during other periods or enable other features that make the whole package

more attractive.

Electric demand between 5:30 and 7PM is a real problem, but it may be possible to

deploy a portfolio of strategies that incent residential customers to reduce their usage during

the workday and perhaps incent workplaces to reduce use after the end of normal business

hours.76 A residential shoulder rate or heavily discounted overnight rate might convince

residences to reschedule appliance use later in the evening without precluding evening air

conditioning. That period might be a useful part of this portfolio as well.
74The first best solution is to mandate real time pricing at marginal cost for everyone and to impose fixed

fees to recover any additional costs. The discussion here focuses on finding the greatest deadweight loss
reduction in a politically constrained, opt-in context with customers who may be loss averse.

75Neoclassical economics could explain quotes. But the fact that these customers choose to “roast” rather
than run an air conditioner for something on the order of $3.50 per hour during a critical period may suggest
that they are using a rule of thumb that does not consider intermediate options between normal operation
and no air conditioning.

76The combination of the halves of the portfolio are necessary to reduce overall peak demand and provide
reliability benefits and to reduce the need for peakers.
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2.7.6 Understanding and Dealing with Cross Subsidies

An optimal opt-in dynamic pricing program has to offer compelling savings to the

customers it most wants to recruit, convince to change their consumption patterns, and

retain.77

A customer with an air conditioner may use far more expensive, afternoon power

than a neighboring customer without an air conditioner, but with the same total power

consumption. If the two customers pay the same price per unit of power that covers the

average variable costs of their joint power consumption, then the customer without air

conditioning will pay more than the average variable cost of the power they consume,

implicitly subsidizing the expensive afternoon use of the peaky78 customer. To illustrate

in a very simplified context, we could imagine that the peaky customer uses 100 kWh of

afternoon power that costs the utility 12 cents / kWh, while the other customer uses all of

his 100 kWh of power off peak when it costs the utility of 8 cents / kWh. The utility charges

a single, time invariant rate of 10 cents per kWh to recover its costs. Time invariant pricing

creates cross subsidies from less peaky to more peaky customers who are on an identical rate.

Differences in when customers use power across climates combine with regional differences

within each California utility’s rate structure to creates cross subsidies among regions.

The analysis in this section finds a perverse pattern that can make naively-designed

dynamic rates unattractive to very responsive customers. Specifically, big customers in hot

climates use more than the statewide average proportion of their power during weekday

afternoons. They tend to be quite responsive to price signals. They also give up the

substantial cross subsidies from customers with flatter load shapes when they switch to

a “naive” dynamic rate. “Naive” dynamic rates are dynamic rates that fail to account

for regional variations in load shapes. For example, a “naive” dynamic rate for a hot

region might yield revenue identical to the time invariant rate for a customer with the

statewide average load shape. Adjusting dynamic rates for regions within each utility’s

service territory can make customers in peaky regions more likely to save relative to the

alternative, time invariant rate79 and more likely to participate. Thus, it is crucial to
77The whole policy implications section could be cast in the language of mechanism design, with a benefit-

maximizing rate designer attempting to design a set of incentives that cause customers to shift power away
from high cost periods (incentive compatibility) while making it rational for the customers who will respond
the most to these programs to accept the rate offer (individual rationality).

78“Peaky” (“flat”) customers use a larger (smaller) than average percentage of their total power consump-
tion during weekday afternoon hours.

79One compelling response to problems that arise when time invariant rates create cross subsidies may
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take these cross subsidies into consideration when designing a rate structure that allows

responsive customers to save.

This section presents simple example rates that achieve revenue equivalence and

then discusses their cross subsidy implications. Consider a set of customers who, on aver-

age, use a proportion αH of their total power use during the set of high cost, peak hours

denoted H. Consider a simple example. Its naive time-differentiated rate would markup

prices by MH during the set of peak hours, H, and then lower rates by αH
1−αHMH at all

other times. These rates would be revenue neutral for the utility if customers did not

change usage in response to the price change. 80 All customers whose peak power use was

larger (smaller) than αH times their total use would experience a bill increase (decrease).

These “structural losses” mean that peakier customers give up receiving significant cross

subsidies to go on dynamic pricing and have to respond significantly before they begin sav-

ing money. Region-specific rates that address cross subsidies are important if naive rates

be to reduce the cross subsidies in the alternative, time invariant rates. Eliminating cross subsidies so most
customers face the full social cost of their decision to air condition their homes while providing carefully
targeted safety nets for vulnerable customers is generally an equitable and appropriate if politically difficult
policy. Deploying effective dynamic pricing should be the first prioritiy because it will almost certainly pro-
vide far larger economic benefits than will reducing cross subsidies. Some in the industry use the term “free
riders” to describe customers from cool climates who switch to dynamic pricing to avoid cross subsidizing
air conditioning users. This inappropriately implies that the rival, excludable, pricable capacity to run air
conditioners full blast on the hottest weekday afternoon of the summer is a public good.

80Converting this stylized example into a more robust rate that can meet utility revenue requirements
under all plausible customer responses is straightforward. The firm can setMi to equal the average variable
cost power during period i and set a uniform per kWh charge, U , during all periods to recover its fixed costs.
The analogous time invariant rate would be to use the same uniform charge U and to set the time-specific
markup equal to the round-the-clock average variable cost for the average profile among its time-invariant
customers. It will then be indifferent between selling peak and offpeak power and between dynamic and
time-invariant rates.(Adams and Yellen [1976] show that pricing that makes the firm indifferent between
selling two different products can be part of a profit maximizing bundling strategy.) If we set Ut = Rt/Qt
where Rt is the firm’s revenue requirement for this class of customers during time t and Qt is the total number
of kWh the firm sells, then periodically updating Ut can ensure that it meets its revenue requirement. We
can do even better by using Ramsey pricing or a practical approximation of it to meet revenue requirements
while minimizing the rate’s consumption distortions.

If the utility uses this approach to create, on average, revenue-equivalent dynamic and time invariant rates,
then customers who respond to dynamic pricing purely by shifting their consumption will come out ahead on
dynamic pricing if the proportion of their power that they use on peak is less than the population proportion:
αH,i < αH . If the customer also changes the total quantity of power that they use, then they will come out
with a lower bill if their total time invariant use times the time invariant price is greater than the sum of what
they would spend at the peak and offpeak dynamic rates: Qi,d,HPH +Qi,d,LPL < (Qi,inv,H +Qi,inv,L)Pinv

The profit issue can be secondary if utility regulators commit to ensure that the utility earns its rate of
return despite changes in quantity and timing. Any welfare improving change in pricing creates a potential
Pareto improvement and careful rate design can capture some of its benefits to increase firm profits. In my
conversations with utilities, however, concerns that the regulators will not adjust rates to restore profits has
been a central reason that they have either feared dynamic pricing or chosen to recover fixed costs during
off peak hours.
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Control group: weekday peak hour use as a % of customer’s total summer-season power
use

climate zone
house type 1 2 3 4 all
apartments 15.7 21.6 22.9 24.9 21.1
Low use single family 17.2 18.8 24.9 24.2 21.1
High use single family 19.9 25.9 27.6 29.1 26.3
all 17.0 21.2 25.2 25.8 22.3
CPP group: weekday peak hour use as a % of customer’s total summer-season power
use

climate zone
house type 1 2 3 4 all
apartments 15.0 16.4 25.4 28.5 19.1
Low use single family 15.7 19.4 22.4 20.6 20.1
High use single family 16.8 18.0 23.3 26.2 20.8
all 15.6 18.1 23.3 23.9 20.0

Table 2.11: Weekday peak hour use as a proportion of each customer’s total power use.
These numbers are weighted to have the same house size and climate zone distribution
as the customer-base of the three major utilities. The tables in this section use the same
universe that I report in regression 2 and the main means table.

impose disproportionate structural losses on responsive customers.

Tables 2.11 and 2.12 show that larger customers and customers in hotter climates

use a significantly larger percentage of their total power consumption during weekday 2-7

PM hours.81 The control group use patterns offers insight onto the distribution of structural
81Customer attrition and the fact that the SPP collected nine months of data to represent a six month

summer season complicate calculating a meaningful average percent of power used on peak. This is especially
true for the treatment group where particularly peaky customers may have exited the experiment early.
Every approach to this problem has significant flaws. One approach would be to report the average value

of the ratio of peak to total consumption over all customers i for each week t, or
Qi,t,H

Qi,t,H+Qi,t,L
. This would

have underweighted early-exiting peaky customers because we see people who left early for fewer weeks.
Another approach would be to calculate total use during peak and offpeak periods for each customer. This
would give equal importance to each day that we observe a customer. Days from June would get equal
importance to days from July, but the treatment period sample typically contains one observation of May,
June, and October (from either 2003 or 2004) and two of July, August, and September (2003 and 2004).
This approach would overstate the importance of the hottest (and often peakiest) summer months which
are measured in both 2003 and 2004. The ratios reported here give each customer equal weight and but
downweight observations from repeated months in an attempt to give each month equal importance:

First I calculate each customer i’s average use during weekday peak and offpeak periods and weekends
(j ∈ {L,H,w}) separately for the over and undersampled months. Let t1 be the set of oversampled time
periods (September and most of July for all utilities, August for SCE and SDG&E). Let λu represent the
percentage of the summer season that comes from the oversampled times for customers of utility u. I then
average total use during each kind of period, weighting by λu, the proportion of the summer season during
each period
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Percentage of each customer’s summer-season power used on peak
control group

climate min 25% 40% 45% median 55% 60% 75% max
zone
1 11.5 14.7 15.8 15.8 16.1 16.2 16.9 18.4 36.7
2 11.6 16.3 18.2 18.9 19.2 20.4 20.8 23.2 52.2
3 6.8 19.5 22.2 23.4 24.7 25.2 27.3 31.5 47.3
4 15.0 19.4 22.5 23.0 25.2 26.3 27.7 31.0 39.8

CPP group
1 11.1 14.5 15.1 15.2 15.8 15.8 16.1 17.4 21.5
2 6.7 14.6 16.0 16.2 17.1 17.3 17.5 19.8 48.4
3 7.1 16.1 19.3 20.1 21.3 22.2 23.7 28.2 55.1
4 5.5 17.9 21.0 21.6 22.4 24.4 26.3 29.8 47.0

Table 2.12: Power used during weekday peak hour use as a proportion of total power use.
These numbers are weighted to have the same house size and climate zone distribution as
the customer-base of the three major utilities.

losses. The average customer in every control group in the hotter two climate zones begins

facing bigger bills because they used more than the statewide average of 22.3% of their

summer-season power during peak hours. Peak hours are less than 15% of all hours. Further,

even after the treatment group adjusted its load shape, more than 55% (45%) of customers

in climate zone 4 (3) come out behind.82,83

We could preserve inter-regional cross subsidies by simply calculating a region

specific proportion of power used during peak periods αr,H for each region r and using

those to set peak and offpeak markups that preserve revenue neutrality within each region

as well as statewide.84 Doing so would mean that between 60 and 75% and between 55% and

Xi,j = λuXi,j,t1 + (1− λu)Xi,j,t2

Then I use the average total use during each kind of period to calculate the ratio of peak to total use,
letting ω be the percentage of all days in the sample that are weekends and holidays:

αi,H =
(1− ω) ∗Xi,H

(1− ω) ∗ (Xi,H +Xi,L) + ω ∗ (Xi,w)

82There is evidence that the smaller treatment customer classes in zones 3 and 4 are peakier. These small,
peaky customers may have stayed in the pilot because benefits like $175 in participation payments and a
potential sense of contributing to society outweighed their modest increase in bills.

83By contrast, more than 75% (60%) of control customers in temperate, climate zone 1 (2) would be
structural winners on this simple rate. It further suggests that the treatment group may have increased its
gains by further flattening its load shapes in response to price signals.

84Baseline-rebate rates can be thought of as setting a customer specific αi,H . Using each customer’s
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Average Percentage of each customer’s summer-season power used on peak
for CPP customers who stayed and left

climate zone chose to stay exited stayed by default
2 18.9 19.0 16.7
3 21.3 25.3 23.9
4 17.8 23.8 24.1

Table 2.13: This is a sample of 157 customers for whom we have continuation data or who
would have been in that sample had they not exited early. Results are weighted to make
them representative of the state population as a whole.

60% of the treatment group would come out ahead in zones 3 and 4 respectively. Further

analysis could examine how many customers who would still come out behind responded

so little that there is little value in designing a program attractive to them and how many

reduced weekday afternoon use from extremely peaky starting points.

Offering customers who live in hot climates fixed credits of roughly the amount of

cross subsidy that they enjoy under time invariant pricing could also address this problem.

Evidence from Attrition

Customer choices about whether to continue on dynamic pricing85 at the end of

the experiment confirm the importance of designing rates that allow responsive customers

to save money. At the end of the SPP, customers got letters asking them to choose whether

to continue on dynamic pricing or return to time invariant rates.86 These choices offer

direct evidence about whether customers thought that dynamic pricing outperformed time

invariant prices. They are a meaningful measure of whether CPP worked well for a customer.

These customers faced incentives that are quite close to the incentives that customers in

dynamic pricing programs would face if they were prompted to choose whether to renew

their participation. Table 2.7.6 shows data on a small, unrepresentative sample of about

200 end-of-experiment choices. The results discussed here are not as definitive as those

elsewhere in the discussion.

• In climate zones 3 and 4, the customers who opted out by mail or phone or left the

behavior to set a customer-specific baseline level has notable drawbacks discussed at length in Chapter 3.
85The SPP did qualitative interview research about why customers stayed on or left dynamic pricing at

the end of the experiment. Schultz and Lineweber [2006] and Lineweber [2005] report the results of this
work.

86After the conclusion of the experiment, dynamic pricing customers 1) had to pay a new, modest, monthly
meter charge and 2) got no more payments for their participation.
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experiment early were, on average, peakier than the statewide average.87

• In all climate zones for which continuation data are available, the customers who

returned a form asking to remain on dynamic pricing used, on average88, a smaller

proportion of their power on peak than the statewide average, meaning that they

saved money under this set of dynamic rates.

• Customers who participated in the whole experiment and did not return the form

remained on dynamic pricing by default. They were slightly peakier on average than

the control group average.89

This discussion neglects many of the complicated facets of California’s rate struc-

ture and the SPP’s intentional summer-to-winter bill shifting, but its main ideas hold in

the more complicated reality.

The SPP created deployed rates that were ill suited for the most responsive cus-

tomers because it required that “the experimental rates . . . be revenue neutral for the

class-average customer over a calendar year, in the absence of any change in the customers

load shape” [Charles River Associates, c, 18]. This kind of cross subsidy may reconcile

Herter [2006b]’s finding that customers from the cooler climates got significant bill sav-

ings with my finding that they barely changed their load in response to dynamic pricing

incentives.90

See Borenstein [2006] for a careful discussion of directly analogous dynamic pricing

wealth transfer issues in the context of the implementation of real time pricing for large

industrial customers. Similarly Wiser et al. [2007] explores the importance of rate design

for making commercial solar photovoltaic installations attractive.
87Some of the customers who left the experiment early moved. Others were unhappy with the rate.
88I get this result after dropping one extremely small ( 150kWh/ month), customer in zone 2 who used

more than half of his power on peak. This customer is so small that a temporary spike in use during peak
hours, like a construction project, could switch him from appearing extremely flat to extremely peaky.

89There is significant evidence in the behavioral economics literature [Choi et al., 2003] that people tend
to accept the default choice even if it is not the best choice for them.

90If cool climate customers are barely responding to dynamic pricing, then we can offer them the structural
savings in the form of bill credits without needing to enroll them in dynamic pricing. This would let us
direct marketing, education, and (possibly) metering spending toward highly responsive customers in hotter
climates.
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2.7.7 Setting Prices

The current, imprecisely estimated results suggest that customers’ response to

high and low ratio CPP rates seem to be quite similar.91 If these results hold up, it would

suggest that a variety of rates that offer customers incentives to reduce demand during high

cost periods and stronger incentives during scarcity periods can significantly outperform

time invariant rates. This gives policy makers flexibility to choose rates to meet concerns

beyond economic efficiency. However, before we take this to mean that all reasonable CPP

rates are indistinguishable, it is important to note that the SPP data show that modest

rate differences drive few differences in the short term, but the current analysis provides

little evidence about longer term participation and investment issues:

• Customers will learn over years of experience whether responding to price signals

generates savings that justifies staying on the rate and changing electricity use on a

day-to-day basis.

• The relationship among the critical, peak and off peak prices and the price variation

among seasons affect which customers save under the program and stay on it. Rates

that cause bill shocks or change seasonal bill patterns may cause customers who

analyze one bill at a time to wrongly believe that they are losing under the new rate

and to exit.92,93

• In the long term, rates determine whether it makes economic sense for firms to offer

and customers to adopt response technology.

Finding that different choices of peak prices elicit fairly similar customer responses

has significant implications for forecasting the impact of candidate rates. It may suggest
91One specification finds that customers who faced a higher peak and critical prices, counterintuitively,

used more critical-period power than did customers who faced lower critical prices during critical events at
the p=.10 level. Other critical period results were substantively similar, but statistically insignificant. The
TOU peak results were imprecisely estimated, but substantively small and statistically indistinguishable
from zero. All of the current results allow us to reject the hypothesis that moving customers from the
low-ratio to high ratio rate would prompt them to reduce consumption at least another .1 kW at the p=.05
level. So we can state that immediate, substantively striking impacts of modest adjustments to peak and
critical prices are unlikely.

92Bold statements on bills can address this problem. They might say: “You are on track to save $X this
year. This rate tends to lower winter bills and raise summer bills.”

93The SPP’s high ratio rate tended to lower summer bills and raise winter bills. This creates evidence
about bill shifts’ impact on attrition. We would look for differences between high and low ratio rates in
customer’s propensity to exit that are unrelated to what the customers would save. The data to do this
analysis exist, but UCEI is still in the process of obtaining them.
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that, in the absence of more flexible demand estimation models fitted to larger datasets,

predictions based on point estimates of the price-independent TOU peak and critical price

impacts may be more accurate than plugging the prices and a point estimate of a CES

demand elasticity into a demand model.

2.7.8 Selling Responsible Energy Citizenship

The survey results discussed in section 2.2.4 suggest that the CPP group, and

especially the high use subset of it, has a stronger belief in sacrifice for the common good

than did the average control customer. The survey reports that treatment customers were

more likely to agree that “everyone should pay a little” to protect the environment but

were no more likely to believe that the environment was at risk. This suggests that some

customers are receptive to signing up for dynamic pricing because of its social benefits.

Thus marketers should test materials that describe benefits like increased grid reliability,

reductions in the operations of old, dirty peakers94, and the reduced need to build peaking

plants in the customer’s community.

2.7.9 Concerns about vulnerable populations

There is legitimate concern about whether a simplistic, mandatory CPP imple-

mentation would harm vulnerable customers who have low incomes and inflexible demand.

A disproportionate number of elderly customers and families of small children might have

these characteristics.95

It is harder to make a case that we need to protect customers from a program

that customers have to opt-into and that they can leave at any time. The SPP’s evidence

confirms the belief that there is little reason for concern about the impacts of an opt-in

program on the elderly and families with small children:

• Tables 2.2 on page 18 and 2.3 on page 19 show that children under the age of 5

were underrepresented in the CPP population relative to the control group, but the

families with small children that did participate were more likely to stay in the pilot
94California’s peakers are dirtier than its base load capacity. This is not true in other regions with coal-fired

base load capacity [Holland and Mansur, 2005].
95A simple, effective way to address concerns about a mandatory CPP program would be to improve

everyone’s incentives with mandatory CPP and then to add a second equity program that would identify
categories of vulnerable people and give them a fixed bill credit roughly equal to the cross subsidy they gave
up to participate in CPP.
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so that this difference was statistically insignificant among customers who stayed in

the experiment at least four months. Indeed, the results reject the intuition that

families with small children are less flexible in their energy use. All specifications

find that families with small children either use the same or less peak power than did

households with the same number of people, but with one more member between ages

5 and 65 instead of a child. Specification 4 finds that households responded to price

signals by about 1.1 kWh per person per day (p=.01) more for each child under age

5. A simpler difference-in-difference specification that adds the number of children

under 5 to specification 2, gets the same sign but no statistical significance.

• Senior citizens were a larger, but statistically indistinguishable, proportion of the the

CPP group than they were of the control group. Attrition did not change this pattern.

Households with members over 65 responded to price signals significantly more – by

about 1.1 kWh per person per day (p=.001) – than did similar households with the

same number of people, but with that member being between ages 5 and 65.96

Gulf Power’s Good Cents Select residential CPP program’s experience is similarly

reassuring. Thirty percent of its customers are over 65 [White, 2005, 11]. Its customers

respond well, save money, report very high satisfaction, and rarely leave the program.

[White, 2006]

There is considerable evidence that most customers who opted in responded and

came out ahead under the terms of the experimental rate and participation payments. 97

Many customers who paid more under dynamic pricing opted out during the experiment

when some customers left, and at the end of the experiment when about 60% of customers

chose to continue on CPP and the remaining customers returned to more conventional

tarriffs. SPP customer choices about entering and leaving dynamic rates deserve a careful

study in their own right.
96The results in appendix F.2 suggest that seniors in high use households were far more responsive than the

average person in a high use household, while seniors in low use households were statistically indistinguishable
from the average person in those houses. The selection problems in the high use category suggest the use of
some caution in believing that the average high use senior will respond better, but do suggest that high use
seniors who opt-in really can benefit from this program.

97A striking deviation from rationality is that many structural winners from the temperate climate zones
refused invitations to participate. And the opt in rates from this experiment were far higher than those
that similar, fully deployed programs have gotten without big incentives to participate. See Chapter 3for an
extended discussion of this.
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2.8 Conclusions

Air-conditioning-driven electricity demand is a large part of the justification for

dynamic pricing. Customers in California’s Statewide Pricing propitiously responded the

most to dynamic pricing during hot weather in regions where most customers have air

conditioning. Customers in the desert appear to have provided sustained savings over

many weeks per summer, while customers in the central valley appear to have provided

more focused reductions in demand during peak periods. All else equal, bigger customers

responded more during critical events. It estimates that the benefits of dynamic pricing

range from zero in cooler climates on cooler days to .3 (.4) kW every hour for TOU peak

(critical) prices on the hottest days in the two hot climate zones. It finds a difference of .07

kW in use between the treatment and control groups beginning during the ‘pretreatment

period’ that it treats as a preexisting difference, but may in fact be further impacts of

dynamic pricing that began early when customers received documents that were clearer

about the nature of the new prices than about their timing. This suggests that opt-in

dynamic pricing programs should be designed to recruit customers from hot climates and

to provide good incentives during hot weather.

Dynamic rates need to make it rational for highly responsive consumers to par-

ticipate in the program and give them incentives to reduce usage during high cost periods.

The SPP’s experience suggests that offering the most responsive customers enough savings

to convince them to participate requires careful attention to cross subsidies and differences

in regional usage patterns. The SPP’s experience suggests that a wide variety of rates can

convince customers to “conserve” every weekday afternoon and to “conserve a lot” during

critical periods.
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Chapter 3

Applying Psychology to Economic

Policy Design: Using Incentive

Preserving Rebates to Increase

Acceptance of Critical Peak

Electricity Pricing

3.1 Introduction: The economics and psychology of dynamic

electricity pricing

This project extends the idea that policies should address problems by improv-

ing economic incentives. Insights about how people make decisions suggest that careful

presentation can help consumers understand incentives and make the individually rational

responses that economists expect them to. This project applies insights about economics

and psychology to understand and address costly consumer resistance to improved residen-

tial electricity pricing. This project proposes Incentive Preserving (IP) Rebates to sidestep

heuristics that can cause mistaken resistance to critical peak pricing (CPP) of electricity.

Most customers are on time-invariant pricing that charges the same price per unit

of power during high and low cost hours. “Real time” electricity pricing sets hourly prices
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that reflect the marginal cost for that hour. Signing up every residential customer for real

time pricing could deliver an estimated $6-12 billion in annual social benefits.1

CPP is a simplification of real time pricing that announces a schedule containing

a handful of peak and offpeak periods and sets a price for each period. CPP makes prices

reflect some of the enormous variations in marginal social costs between periods when power

is scarce and when it is plentiful. CPP allows the utility to address scarcity by designating

roughly 1% of all hours as critical periods which invoke a significantly more expensive critical

rate. Policy makers consider CPP an attractive rate for residential and small commercial

customers. This project takes CPP rates’ prices and schedules as given.

CPP works. Residential customers who switch to CPP reduce their usage dur-

ing higher-priced, peak periods and the highest-priced, critical periods. CPP customers

report high satisfaction levels. Indeed, the majority of customers who received $175 to

participate in a California CPP experiment chose to stay on CPP at the conclusion of the

experiment.(Faruqui and George, 2005; Charles River Associates, c)

Consumers, however, resist signing up for CPP. Mailings offering Florida customers

a CPP rate that saves participants an average of $90 a year get a 1.3% opt-in rate (White,

2006). Customers are more receptive to baseline-rebate programs that create similar in-

centives by offering rebates to customers who use less than a baseline amount of power

during critical periods, but calculating baselines from the customer’s recent usage creates

perverse incentives for customers to use more power during baseline-setting periods in or-

der to increase their eligibility for rebates. Customers who resist CPP but are open to

rebate programs with the same average bill appear to have preferences about elements of

the presentation that affect neither incentives nor total bills.2

Residential CPP will generally be an opt-in program until it develops a track record

that justifies making it the default. Current sign-up rates limit CPP’s ability to generate

a compelling track record. It is difficult to generalize from the unusual customers who opt
1American residences spent $116 billion on electricity in 2004.

(http://www.eia.doe.gov/cneaf/electricity/epm/table5 2.html ) Borenstein (2005a) reports that real
time pricing could yield 5-10% annual savings on energy over the long term. There are – to the best of my
knowledge – no academic papers that estimate the potential benefits of CPP and compare those to real
time pricing.

2It is rational for consumers to prefer time-invariant pricing to CPP if CPP’s transaction costs or higher
prices during peak periods reduce the consumers’ overall utility. By the same token, a significant number of
consumers who use a smaller-than-average proportion of their electricity during weekday afternoons could
save money under CPP without changing their consumption patterns. Yet, the majority of these consumers
do not sign up to claim these savings.
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in to existing CPP programs to the customer base as a whole. Pilot programs attempt to

recruit more representative customer pools, but they provide limited evidence because they

only have tens or hundreds of customers. Policy makers are likely to want field experience

with broad-enrollment programs before they consider making dynamic pricing the default

rate. Presenting the rate in a way that helps customers to make better enrollment choices

will both improve the performance of opt-in programs and may be a stepping stone toward

making dynamic pricing the default rate. Hence, this project seeks to present CPP in a

way that elicits good enrollment choices when shown side by side with the status-quo time

invariant rate.

CPP presents good incentives, but does so in a way that biases several heuristics

toward choosing not to enroll. CPP delivers subtle savings by lowering prices most of the

time. Its critical events inflict visible losses by notifying customers that it is raising prices

so much that customers spend more on power or get less power during the critical period

than they would had it been an ordinary period. California customers reduced usage 12%

when the CPP pilot experiment events more than doubled prices.(Faruqui and George,

2005; Charles River Associates, c; Herter et al., 2007) Thus, during the 1% of all hours that

were events, many customers paid more for power despite conserving. CPP reduced most

participating customers’ total annual bills because the savings from small price reductions

nights, mornings, and weekends more than offset any bill increases during the rare, but

visible critical events. People’s heuristic decision making procedures are likely to notice

and overweight the high priced periods and either not notice or underweight the gains.

Concentrating losses in a few high cost months and diffusing gains over the calendar repels

loss-averse customers if they “narrowly bracket”, meaning that they consider bills one cycle

– or even one day – at a time, rather than over the long term (Thaler, 1999; Read et al.,

1999). CPP also repels customers who believe it is unfair to charge very high prices for

air conditioning when they need it the most (Kahneman et al., 1986). Incentive Preserving

Rebates change the presentation of CPP to avoid these biases.3,4

IP rebates present critical events as opportunities to earn rebates through sacrifice.
3IP rebates can work with a wide family of dynamic pricing programs. This project presents them in the

context of CPP because CPP is a simple, illustrative, and policy relevant application. Section 3.6 describes
the generalization.

4Adding IP rebates to CPP may slightly change the amount of power that customers buy because IP
rebates charge a few extra dollars during some months and return those dollars as bill reductions in other
months which creates income effects.
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IP rebates change neither the total annual bill nor marginal incentives.5 IP rebates add a

fixed amount to each month’s CPP bill. This monthly payment buys the customer rights

to buy a fixed quantity of power at the usual price during critical events. If customers use

less power than they had rights to during an event, they get a rebate for the value of the

unused rights.

We can see how this works in practice by considering a rate that sets the oppor-

tunity cost of a kilowatt hour (kWh)6 during a critical event at 60 cents and charges 24

cents per kWh during normal peak periods. A customer who has the right to buy one kWh

during a critical event for the normal price of 24 cents can use the right for either 36 cents

worth of power or for a 36 cent rebate. We can offer a customer the right to 8 kWh at the

usual price during each of 15 events if we charge the customer $3.60 (which buys 10 kWh

of rights) each month. A customer who exhausts their rights during an event has to pay

the full price of 60 cents per kWh.

The IP rebate-rate design collects monthly fees to purchase rights. It does so

through declining block pricing that adds a markup to the first, fixed number of kWh that

a customer purchases each month. Section 3.4.2 describes this approach and literature

reporting that customers make better choices under this presentation.

IP rebates maintain the right marginal incentives while using fixed transfers of cash

or property rights to adjust the size of monthly bills and to use forgone credits rather than

price increases to raise opportunity costs during events. Variations on this fixed transfer

strategy underlie the Coase Theorem, hedging to manage risks in financial markets, and

policies like cap-and-trade pollution permit systems.

Psychological and economic factors are important throughout the life cycle of a

dynamic pricing program. This project suggests a way to present good economic incentives

that is compatible with participants’ decision-making heuristics. This project focuses on

psychology at the opt-in stage and on economics of creating the right incentives at the

participation stage. This prioritization reflects several insights:

• Decision making heuristics appear to cause mistakes at the opt-in stage that hurt
5This project, like much of the policy-oriented behavioral economics literature, assumes that consumer

errors and biases are a common but not universal problem and thus seeks interventions that improve biased
consumers’ choices without affecting rational consumers’ choices. (c.f. Camerer et al. (2003) “Regulation for
Conservatives: Behavioral Economics and the Case for ‘Asymmetric Paternalism’” and Sunstein and Thaler
(2003) “Libertarian Paternalism is Not an Oxymoron”)

6A kWh is enough energy to run a 100 watt light bulb for 10 hours, or a central air conditioner for about
15 minutes.
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consumers and society. Customers who have experienced dynamic pricing appear to

respond to its prices and consumption incentives in roughly economically rational

ways. Customers who experience dynamic pricing reduce use during high-priced pe-

riods, save money, and report high satisfaction levels, which is consistent with them

being economically rational.

• If there are bad incentives for participating customers, enough customers find and

take advantage of them to cause problems. For example, some Anaheim customers

reacted to incentives by using extra power on ordinary summer afternoons to become

eligible for larger rebates (Wolak, 2006).

• Many customers suffer “projection bias” which causes them to overestimate how dif-

ficult a new situation will be to get used to (Loewenstein et al., 2003). This makes

loss-averse heuristics more important when consumers decide whether to opt-in than

after they have some experience with dynamic pricing.

Increasing the credit size has no effect on the utility’s annual revenue or the con-

sumers total annual payments, but ensuring that customers get rebates rather than pay

high prices during events makes the offer more attractive to loss-averse customers. This

project aspires to design a rate that offers most customers a rebate during any month with

an event. This goal comes from considering psychological factors that are likely to affect

the satisfaction of customers who have already signed up for the program.

3.1.1 Implementation

There is good reason to think that the IP rebates are feasible. IP rebates add

revenue neutral charges and credits to an underlying rate that regulators can tailor to meet

local needs.

This project proposes a rate that asks customers to pay for their rights through

a small markup on a fixed number of units of power per month. This creates a trade off

between the customer’s likelihood of getting rebates and their ability to pay for their rights.

For example, a rate might work well for a customer if they used fewer than 20 kilowatt

hours during each five hour event and used at least 300 kilowatt hours per month.

An IP rebate policy has to decide whether to address the challenge of making

an appropriate offer to each customer by offering each customer a customized offer or by
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Table 3.1: Price and demand are very high during one percent of all hours. California ISO
Electricity Market: October 2005 through September 2006; Spot market prices are for the
NP 15 Northern California Region

Median 99% Max
Usage, Megawatts 27,064 43,779 50,198
Wholesale Price, $/kWh $0.045 $0.163 $0.396

splitting customers into categories and making one offer to each category. Making offers to

broad categories of customers defined by use and geography can perform adequately and has

compelling advantages over individualized offers. Specifically, assigning rebate eligibility by

category seems fair since neighbors who live in superficially similar houses will generally get

the same offer. Offers to categories of customers facilitate analysis and discussion among

utilities, regulators, and advocates who may be able to use categories already in use for other

regulatory purposes. Categorical offers reduce the likelihood that customers will demand

extra power in a (misinformed and fruitless) attempt to profit by becoming eligible for

more rebates. An analysis of California data shows that we can make adequate offers to the

vast majority of customers even if we crudely split up customers using readily observable

characteristics like climate zones and monthly summer electricity usage.

This paper proceeds in two stages. The first stage describes the economic case

for improved electricity pricing, the behavioral challenges to implementing it, and proposes

Incentive Preserving (IP) Rebates. The second stage explores whether IP rebate deployment

is feasible by simulating IP rebates’ impacts on a set of California CPP customers.

3.2 Background: Improved electricity pricing can deliver sig-

nificant savings

Providing better incentives for customers to shift power use away from periods

of electricity scarcity has the potential to save billions of dollars, to deliver significant

environmental benefits in some markets (Holland and Mansur, 2005, 2006), and to facilitate

the integration of wind generation into electricity systems.

Electricity storage is generally not cost effective, but electricity supply has to meet

demand minute by minute to prevent blackouts. This creates enormous variations from hour

to hour in the cost of generating electricity.

Most consumers are on time invariant rates, which do not depend on when the
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customer uses the power. Time invariant rates offer customers no incentive to shift use

away from high cost periods. The combination of time-invariant rates and the need to

meet demand minute by minute creates extremely inelastic demand and can give suppliers a

great deal of market power. These factors require electric system operators to maintain extra

generating capacity that they only use when extreme weather or equipment problems tax the

system a few hours a year. (Joskow (2000) and Borenstein (2005a) discuss this background

in detail.) Table 3.1 shows that the 1% of all hours with the highest demand are very costly.

California’s electricity demand was more than 6,400 megawatts higher in its maximum hour

than it was in the 99th percentile hour. The Energy Information Administration estimates

that building a megawatt of generating capacity costs roughly $400,000 and keeping that

facility maintained and ready to operate costs $11,000 a year (Conti et al., 2006). The

maximum spot market price was more than twice the 99th percentile price and roughly

nine times the median price.7

Dynamic electricity rates are a family of rates that vary prices over time to better

reflect hour-to-hour differences in the marginal cost of power. Dynamic residential electricity

pricing has the potential to save up to 5-10% of the $116 billion that American residences

spent on electricity in 2004 – or $6-12 billion a year. Dynamic pricing was generally not

deployed in the past because it was not cost effective. It requires meters that record when

customers use power as well as their cumulative total use, but new computer technology

makes these meters much cheaper. There is compelling evidence that dynamic pricing can

save billions of dollars (Borenstein, 2005a). Residential customers consume 36% of the

electricity used in the US8 and respond well to the incentives in dynamic electricity prices

(Faruqui and George, 2005; Charles River Associates, c; Herter et al., 2007).

Critical peak pricing (CPP) is the dynamic rate that gets the strongest consider-

ation for residential and small commercial customers. CPP announces a schedule of peak

and offpeak periods and prices, and allows the utility to address scarcity by designating

roughly 1% of all hours as critical periods that invoke an expensive, critical rate. Table 3.2
7The wholesale market price of energy during extremely high demand periods is a lower bound on the

true marginal cost of producing the energy. Electricity spot markets include features – like price caps –
that control prices during scarcity periods and cover the true costs of maintaining capacity to meet demand
during those hours through other payments. Borenstein (2005a) discusses how current electricity prices can
understate the cost of scarcity and simulates more accurate prices. Wholesale energy prices are lower than
retail prices because wholesale prices omit costs of infrastructure like the electrical distribution network,
customer service, and utility sunk costs from things like nuclear power plant construction and the California
electricity crisis.

8source: Electric Power Monthly 2004 figures: http://www.eia.doe.gov/cneaf/electricity/epm/table5 1.html
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on page 91 presents an example of CPP.

The technology and economics are largely ready to support widespread dynamic

pricing. Two recent National Town Meetings on dynamic pricing brought together more

than a hundred regulators, utility staff members, academics, and suppliers. Few utilities

have successfully implemented dynamic pricing – largely because they have struggled to

present dynamic pricing in ways that consumers find attractive (Barbose et al., 2004).

Many have not done a good job of risk management, marketing, and implementation. Most

implementations have struggled to get customers.

For example, field experience in Florida and Illinois shows that residential resis-

tance is a serious problem.9 Gulf Power offers GoodCents Select residential CPP in Florida.

Gulf Power and its parent, the Southern Company, are considered leaders among utilities

in marketing and customer service. The Community Energy Cooperative’s Energy-Smart

Pricing Plan offers Illinois residences “real time prices” based on the hourly market rate.

Both notify customers of high priced periods. The two retailers report that most customers

who sign up save significant amounts of money, are satisfied, and stay enrolled. But both

programs get sign up rates of only about 1%.

Some consumer resistance is rational. Customers who use a large proportion of

their power during peak periods would pay more under CPP. The transaction costs of

responding to price signals could deter some customers. Practitioners and scholars are

working to address both issues (see e.g. Borenstein (2006); Wright et al.). Gulf Power’s

Good Cents Select program creates winners by saving participants an average of $90 a

year (White, 2006), and reduces transaction costs by providing a computerized “set it and

forget it” thermostat that automatically shifts air conditioning away from critical periods

(Gulf Power). However, conventional economic reasons cannot explain the high rejection

rate among customers who use a larger-than-average proportion of their power off peak and

would save money on CPP even if they did not respond to price signals. Customer reten-

tion and customer recruiting are related, but fundamentally different challenges. Retention

involves customers who have experienced CPP. They know the program’s implications for

their total bills, lifestyles, decision making heuristics, and preferences. Recruiting involves

decisions by customers who know significantly less. Further, retaining customers requires
9Large commercial and industrial customer resistance is also a problem. Commercial and industrial

customer are beyond the scope of this project because large consumers should hire analysts and otherwise
analyze economic decisions in different ways than small customers do. Large customers may also suffer
principal agent problems.
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1) that responsive customers save money under the new program which is a function of

the CPP rate; 2) that the program be explained clearly and that customers know when

they are saving money; 3) that responding not be too onerous – which requires thinking

carefully about whether to include evening hours in events and whether to call events on

consecutive days; and 4) – potentially – that the program use something like IP rebates

to present critical events in a way that meshes with the way people make decisions. Gulf

Power, the Community Energy Cooperative, and California’s Statewide Pricing Pilot have

high customer retention rates. Field experience suggests, however, that recruiting is a

harder, unsolved problem. This project concentrates on designing CPP rates that facilitate

recruiting customers.

This project tries to address the recruiting challenge by designing policies that

overcome psychological resistance to efficient policies among consumers who stand to gain

from signing up for them. It parallels a literature that reports that economic efficiency

does not sell itself in the political marketplace. That literature reports the success of clever

designs and compromises that protect features that achieve efficiency while letting political

concerns drive other design choices (Robyn, 1987; Hausker, 1992).

Residential CPP will generally be an opt-in program until it develops a track record

that justifies making it the default.10 The benefits of signing an additional customer up for

dynamic pricing are greatest when there are few customers on the program and diminish

as dynamic pricing’s market share expands (Borenstein and Holland, 2005). Getting a

significant fraction of customers signed up could deliver compelling benefits even if it is well

under 100%. Hence, this project seeks to present CPP in a way that elicits good choices

when shown side by side with the status-quo time invariant rate.

3.3 A variety of psychological theories suggest that CPP’s

presentation of incentives will repel customers.

CPP delivers subtle benefits by modestly lowering prices most of the time while

it occasionally inflicts visible losses during critical events when the average customer uses
10CPP’s initial opt-in status is a political reality, but making it opt-out or mandatory might be better

policy. The strand of literature that suggests that IP rebates might work also reports that changing defaults
or forcing people to decide can lead to considerably better choices in retirement savings. (See Choi et al.
(2003) and the literature it cites.) Wood (2002a,b) argues that changing the default may be sufficient to get
large scale participation in pure-pricing, time differentiated electricity rates.
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less power, but pays more in total for it. A variety of psychological theories suggest that

presenting subtle gains and visible losses is flawed and will repel consumers.

• “Narrow bracketing” consumers base their decision on short term outcomes like a

billing period or an afternoon rather than considering the appropriate long term out-

comes (Thaler and et. al., 1997; Read et al., 1999). Narrow bracketing underlies

most of these psychological theories because many customers will come out ahead on

CPP in the long run. (The intervention proposed here specifically addresses narrow

bracketing by delivering significant monetary benefits during the critical periods that

ask people to make the most salient consumption sacrifices).

• A reference dependent loss averse customer codes outcomes as gains or losses relative

to an anticipated (reference) outcome. These consumers consider that losses relative

to the reference point loom larger than gains. A critical event that leads the average

customer to pay more to buy less than they would on their reference, non-critical day

would seem quite painful (Kahneman and Tversky, 1979).

• Studies of choice under risk suggest that consumers not only exhibit something akin

to loss aversion, but also often consider just the worst case rather than the whole

outcome distribution. (March and Shapira, 1987; Lopes, 1987)

Field evidence is consistent with these factors playing a role: “A number of pro-

gram managers suggested that the modest participation rates in their RTP [real time pricing]

program were a result of the fact that .... the vast majority of eligible customers view the

risks of RTP as too great and/or the potential benefits as too small.” (Barbose et al., 2004)

Customers sometimes appear to choose the option with the greater number of

attributes that compare favorably (Redden and Hoch, 2005). A typical CPP rate defines

three-periods: offpeak, peak, and critical periods. Two of these periods – peak and critical –

are more expensive than the time invariant price but account for less than 20% of all hours.

Hence, three period CPP compares unfavorably to time invariant prices to customers using

this heuristic. Gulf Power’s decision to use four CPP periods that sets two off-peak prices

– “medium” and “low” – lower than the time invariant price – might reflect this customer

decision-making heuristic.

Many consumers find it unfair to raise prices to deal with a shortage stemming

from a shock that has increased their demand for a product. CPP often invokes critical
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periods that raises prices when heat waves maximize air conditioning demand. This is

nearly the exact summer analog to Kahneman et al. (1986)’s finding that most consumers

found it unfair to raise the price of snow shovels during a blizzard. Many customers con-

sider conventional, efficient pricing an unfair way to deal with shortages (Kahneman et al.,

1986).11 Gulf Power (Gulf Power) assures customers that its Critical Peak Pricing price

levels “[R]eflect the actual cost of producing electricity during those periods.”

The marketing literature reports that customers prefer declining block pricing to

fixed fees that generate identical revenues and incentives for most consumers (Ho and Zhang,

2004). This is not a challenge to CPP but constrains the ways we can we modify it.

A variety of decision making heuristics in the psychology literature can explain

customers rejection of a CPP rate that would save them money in the long term, but

creates the possibility of larger, more salient short term losses on critical days or during

months when they already use the most power; that raises prices in two out of three kinds of

pricing periods and that raises prices during periods when customers need air conditioning

the most. Indeed, narrow bracketing and any one of the other heuristics could explain the

resistance.

The evidence about these heuristics comes from studies in other, often simpler,

contexts so it is not immediately clear how those studies play out in the CPP context. A

paper in development explores how people think about dynamic pricing to clarify whether

and how these heuristics applies to electricity pricing choices. The study seeks to understand

the thought process that drives resistance to CPP and how IP rebates change customer

thinking.

3.3.1 Behavioral interventions can significantly reduce irrational choices

without affecting the decisions of rational players

Scholars have proposed interventions which, like IP rebates, change the timing of

decisions, costs, and benefits; presentation; and information flows. Studies show that these

interventions improve consumer choices in areas like retirement savings and investment

choices. For example, the “Save More Tomorrow” program increased employee savings

at companies by asking them to precommit to increase their retirement savings rate the

next time they got a raise. This timing sidesteps loss aversion. (Thaler and Benartzi,
11Rabin (1993) and Charness and Rabin (2002) formally model preferences for fairness.
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2004) A series of lab experiments (Gneezy et al., 2003; Thaler and et. al., 1997; Gneezy

and Potters, 1997) show that customers invest more in riskier, but higher expected return

instruments when experimenters send them aggregated information which forces them to

broadly bracket. This reduces the likelihood that subjects will learn of temporary losses,

which reduces resistance from reference dependent loss aversion. Most of the increase in

risk taking happened as soon as the subjects learned that they will be getting aggregated

feedback but before they experienced the aggregated reports (Gneezy and Potters, 1997)

which offers hope that merely promising to reduce the experience of losses can recruit

customers.

Marketers frame costs as gains by presenting sales below a “regular” reference

price or by offering rebates. They use deferred payments to deliver benefits now and costs

later. Public policy designers who consider decision making heuristics in designing policies

should aspire to use interventions that correct, rather than cause self-destructive mistakes.

The policy oriented behavioral economics literature is yet to consider whether changing the

presentation of prices in economically neutral ways could help people make better decisions

about whether to sign up for CPP, whether to invest in energy efficient products, or whether

to own a car or rely on pay-per-use transportation. The policy oriented literature uses many

of the same insights, but aspires to help people avoid mistakes rather than just changing

decisions to maximize profits.

Behavioral economics studies and commentaries on their policy implications (Sun-

stein and Thaler, 2003; Camerer et al., 2003) seek interventions that improve biased con-

sumers’ choices without affecting rational consumers’ choices because consumer errors and

biases are a common but not universal problem. This project shares that outlook.

Interventions like changing the presentation of choices and information flows and

the combination of CPP and IP rebates (CPP-IPR) proposed here reflect the emerging idea

that we should address problems by not only using good incentives – like CPP – but also

by presenting incentives in ways that reflect how consumers decide.

3.3.2 Similar interventions to improve decision making by addressing bi-

ases are possible for electricity pricing

Assigning customers property rights that allow them to earn rebates and come out

ahead during critical peak events can sidestep resistance from all of these heuristics:
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• Rebate opportunities can transform the presentation of critical events into opportuni-

ties to earn rebates through sacrifice rather than obvious losses when customers pay

more to get less.

• Moving monetary gains into the same evaluation period as consumption losses largely

sidesteps narrow bracketing.

• Customers who count the number of favorable attributes will see outcomes during

critical events that look better than the status quo time invariant rate instead of

looking worse. That means that the majority of CPP-IPR periods look better than

the status quo rate.

• A rebate program seems fair because customers have the right to use power during

shortages and the program pays willing customers to conserve, rather than making

customers face the likelihood of paying more to get less during each event.

• The property rights that creates rebate opportunities will typically improve outcomes

on both the costliest days and costliest months12 which will make the offer more

attractive to customers focused on the worst case. As 3.10 describes, CPP-IPR is

particularly effective in reducing the worst monthly outcomes in climates with the

hottest where customers use the most power and concentrate that use during the

season of scarcity.

Rebate programs seem popular with consumers. Members of a PEPCO focus group

of residential customers from Washington DC considered conventional real time pricing and

a similar rate presented with rebates. When asked which of the rate features presented that

night they liked, most customers mentioned rebates. (King and Harper-Slaboszewicz, 2006)

We need to worry that using IP rebates to reframe critical events as opportunities

rather than threats will make customers more willing to sign up, but less responsive to

critical events. A series of experiments have documented an “endowment effect” that makes

customers demand far more to give up mugs that they have just been handed than they

are willing to pay for mugs that they do not have, so there is reason to be concerned that

telling customers that they own the right to low priced power will make them less likely
12Critical events happen disproportionately when the average customer is using the most power and paying

the most for it. CPP-IPR dampens seasonal variations for these customers. Some customers’ usage does
not follow these patterns.
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to give it up. Anaheim customers shifted a significant amount of consumption away from

critical periods to earn rebates in a pilot test of a a critical peak rebate program (Wolak,

2006). A CPP-IPR program that created an endowment effect might still deliver more

benefits than a CPP program with no endowment effect, if the CPP-IPR program got a

higher participation rate than the CPP program.

The remaining challenge is to develop an intervention along these lines that pre-

serves CPP’s incentives and is feasible to implement.

3.4 Improving the presentation while preserving incentives

Psychology suggests a need to change the presentation of dynamic pricing to make

critical events into opportunities to gain and to do so without imposing fixed fees. This

section seeks ways to deliver that presentation in a way that preserves marginal incentives

and charges each customer a total annual bill identical to what would have been charged

under CPP.

CPP rates are attractive because they are a simple rate that creates a uniform and

reasonably good marginal incentive during each time period. Their incentives are indepen-

dent of the customer’s power usage in this time period or a previous time period. Preserving

marginal incentives is important because Wolak (2006) reports that many customers ex-

ploited the incentives in Anaheim’s rebate program. A senior regulator characterized these

customers as “mini-Enrons” when she discussed his findings at the University of California

Energy Institute POWER Conference in March 2006.

3.4.1 Using fixed credits and fixed charges to offer rebates while preserv-

ing CPP’s marginal incentives and annual total bills

Incentive preserving rebates transform the presentation of CPP while preserving

CPP’s revenue streams and generally preserving its marginal incentives.

IP rebates make critical events into opportunities for customers to gain by selling

each customer rights to a block of power at the regular price during critical events and

offering rebates for the value of any unused credits. The rebate value gives customers the

right incentives to choose between using their rights and cashing them in. Each customer

pays a fixed monthly fee to buy these rights. For example, a customer might pay $5 a month
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to buy the rights to $4 worth of power during each of 15 events a year. So the customer

pays a total of 12 ∗ $5 = $60 per year to get credits worth $60.13

The essential insight here is that we can maintain the right marginal incentives

while adjusting daily and monthly bills through fixed transfers of cash or property rights.

Since CPP defines the number of events per year and the prices during the critical events the

value of rights to use power during each event is clear and there is no reason to charge a risk

premium. Hence, there is a well defined price of the property rights to power, so transfers of

cash are identical to transfers of property rights. Versions of this insight underlie the Coase

Theorem, hedging in financial markets, and policies like cap-and-trade pollution permit

systems.

We can make these transfers of rights revenue neutral for each customer – every

penny they put in they get back either as power or as a rebate.14 This revenue neutral-

ity means that it is impossible for a customer to profit by strategically manipulating the

number of rights that the utility assigns to them. Hence, the only new economic incentive

that the program creates is the desired incentive to shift use away from peak and critical

periods. Revenue neutrality allows designers to offer quantities of rights that depart from

a customers’ likely usage. They can use this freedom to ensure that most customers get re-

bates and to make the same offer to a broad class of customers. Cross subsidies, where some

types of electricity customers pay more than their share of total system costs, while other

types of customers pay less than their share, are a ubiquitous flaw of electricity rates.15

Revenue neutrality means that there are no cross subsidies in the rebate program, making

CPP-IPR as transparent and as equitable as the underlying CPP rate. Further, it means

that the rebate program should deliver revenue that is identical to CPP revenue – so none of

the design parameters that the rebate program dictates lessens the utility’s revenue stream

or makes revenues harder to predict.16

13The rate in Table 3.2 has customers contribute 2.5 cents ∗ 450kWh = $11.25 per month, which is $135
per year, and offers them $9 ∗ 15 events = $135 per year

14Achieving true revenue neutrality requires paying interest on contributions to equate the net present
value of the dollars each customer pays to the net present value of the rights that they get later in that
calendar year. I omit this straightforward but small and tedious adjustment for brevity.

15Going to real time pricing that sets a price of power each hour is a necessary, but not sufficient condition
to eliminate cross subsidies. Critical peak pricing reduces cross subsidies.

16CPP and CPP-IPR raise identical revenue assuming that customers behave identically under them.
Section 3.3.2 discusses endowment effects that might cause CPP-IPR customers to use more critical period
power. This might cause the kind of shift in revenue that would reflect the relationship between the CPP
price’s critical price and the cost of providing power during those times. If utilities charged a critical price
equal to the marginal cost of critical-period power, then this change would also be (net) revenue neutral.
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Figure 3.1: Presenting IP rebates as the right to choose between power at the usual price or
a rebate during each event is equivalent to presenting it as a fixed credit during each critical
event. Both presentations keep the marginal incentives equal to the critical peak price.

We have a great deal of flexibility in how to describe the rights that the customers

own, but one attractive way to do so is to describe it not as a fixed bill credit during each

event, but as a property right to access a set number of units of power at the reference price

during each critical event. Customers can cash in unused rights for the value of the discount

that the rights provide. Customers on the rate in table 3.2 get $9 worth of rights during

each critical event, which lets them access up to 25 kWh of power for 24 cents each instead

of 60 cents and cash in the unused part of these rights for a rebate of 36 cents per kWh.

Figure 3.1 shows the equivalence of the fixed credit and regular-priced-units presentations

while section 3.5.2 proves their equivalence.

Loss-averse customers may be more receptive to the “usual-price” explanation

(used in table 3.2) than to the “fixed-credit” presentation. The usual price presentation

casts critical event incentives as rights to buy up to a fixed number of kWh at the usual

Rates are often marked up to recover fixed costs and regulators deal with shifts in demand on a regular
basis.
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price, and to earn rebates by automatically cashing in any unused rights. The usual price

is the strongest candidate for the customer’s reference price. The usual price presentation

means that the customers who use less power than they had rights to buy at the usual price

during an event will buy at their reference price and experience no losses. Further, this

presentation allows bills to indicate that a customer never paid for power at the critical

price whenever they had rights to more critical period power in that billing cycle than they

used during events, even if they used more power than they had rights to during some

events. By contrast, the fixed-credit presentation sells power to customers at a higher price,

creating a perceived loss and then returns “lost” dollars through a credit that customers

will code as a gain.17 Since loss-averse customers put more weight on losses than gains,

customers may perceive the offsetting gains and losses in the fixed-credit presentation as a

net loss.18

This presentation of IP rebates preserves CPP’s marginal incentive by keeping the

sum of the price of the marginal unit and any foregone rebate equal to the CPP price for

that time period. It is efficient and fair that all customers face the same CPP incentives

to use power regardless of whether the customer is eligible for a rebate. The critical rate

presented in table 3.2 achieves this by having customers with no rights left pay 60 cents

per kWh, while those with rights face a 60 cent opportunity cost because they pay 24 cents

and forgo a 36 cent rebate for each kWh.

3.4.2 Implementing the monthly fixed fee through declining block pricing

The marketing literature reports that customers are averse to paying the kind

of fixed monthly fees that would be the natural way to charge customers for power rights

without changing their incentives, but that customers are more receptive to almost identical

incentives and charges presented through declining block prices (Ho and Zhang, 2004). A

declining block rate marks up the first few units that each customer uses each month. For

example, instead of using the $5 a month markup in the example in section 3.4.1, we could

mark up the first 200 kWh of power the customer used by 2.5 cents each.

This markup does not change the consumer’s incentive to buy the efficient amount

since IP rebates’ revenue neutrality means they return every cent that customers pay
17Prospect theory suggests that customers will have diminishing marginal sensitivity to gains which will

further diminish the perceived difference in size between the gain from the full credit of presented by the
fixed-credit presentation and the smaller rebate emphasized by the usual-price presentation.

18We could use a model like Koszegi and Rabin (forthcoming) to formalize this.
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through it. Section 3.5.5 proves this. We aspire to have each customer buy the entire

marked-up quantity each month in order to ensure that each customer buys the rights that

the offer promised them. If the rate fails to offer a customer the rebates that it promised

because the customer did not fully purchase their rights, customers may experience the kind

of unexpected loss that the rate structure is designed to avoid.

It is desirable to keep marked-up offpeak power less expensive than the time in-

variant rate so 3-period CPP-IPR rates compare favorably to time invariant rates during

both off peak and critical periods. This is attractive to customers who simply count the

number of periods during which one rate outperforms another (Redden and Hoch, 2005).

It also lets marketers claim that CPP-IPR offers lower prices more than 80% of the time –

as Gulf Power does.

IP rebates that use declining block pricing to collect money and return it during

critical events reschedule a significant part of CPP’s savings. CPP delivers savings in a

subtle way year round during offpeak times. CPP-IPR delivers many of those benefits in a

visible way during critical events. Table 3.3 compares the proportion of customer bills that

come from peak, offpeak, and critical periods under time invariant, CPP, and CPP-IPR

rates. This change in the timing of charges over the year may cause small income effects,

but these effects are likely to be negligible.

Table 3.2 provides an example of how CPP-IPR works in practice and how offer

letters might explain it to consumers.19 In this example rate, customers on the time invari-

ant rate pay 14.6 cents per kWh regardless of when they use it. Customers on CPP pay

more – a 24 cent per kWh “high rate”– during non-holiday weekday afternoons. Customers

on CPP pay less – a 12 cent per kWh “low rate”– during off peak periods. More than

85% of all hours are offpeak. All hours except for weekday afternoons are offpeak inlcuding

weekends, holidays, nights and mornings. The utility can notify customers by telephone

that a period – typically a weekday afternoon – will be a critical period, invoking a 60 cent

per kWh critical rate. Roughly 1% of all hours are critical. The CPP-IPR example rate is

identical to CPP with three modifications:

1. The customer’s first 450 kWh per month are marked up by 2.5 cents.
19The CPP rate in table 3.2 is based on Pacific Gas and Electric’s “low ratio” experimental CPP rate

(Pacific Gas & Electric, a). These CPP and CPP-IPR rates would raise the same amount of money as the
time invariant rate did from the customers on time-invariant rates in California’s Statewide Pricing Pilot.
California has some of the highest electricity prices in the country.
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Table 3.2: Examples of rates. The IP rebate offer here is appropriate for a high use customer
with air conditioning in a hot climate.

Price per kWh
Price Pe-
riod

Times in effect Time In-
variant
Rates

CPP CPP-IPR

initial price beyond 450
kWh/mo.

Low weekdays before
2PM; after 7PM;
all day weekends &
holidays

14.6 cents 12 Cents 14.5 cents 12 cents

High Weekdays 2:00PM-
6:59PM

14.6 cents 24 Cents 26.5 cents 24 cents

Critical Announced with a
telephone call at
least 24 hours in
advance

14.6 cents 60 Cents First 25KWh: usual price for
the period, as listed in the two
rows above; 36 cent rebate for
every kWh you save. Addi-
tional kWh after the first 25:
60 cents

2. The customer has the right to access up to 25 kWh of power during an event at the

usual price (typically the high price) for that period. If the customer uses less than

25 kWh during the event that lasts 5 hours or less, he also earns a 36 cent per kWh

rebate for the difference between their 25 kWh of rights and their actual use. For

example, a customer who used 20 kWh during a critical afternoon would get a rebate

on 25kWh of rights− 20kWh used = 5kWh, for a total of a $1.80 rebates.

3. CPP puts a ceiling of 1% on the proportion of hours in which the utility can invoke

critical prices, while CPP-IPR has a floor that requires the utilities to offer customers

rebate opportunities equivalent to declaring 1% of all hours as critical periods. Section

3.4.3 discusses this in more detail.

3.4.3 Strict revenue neutrality: customers cannot profit by becoming

eligible for extra rights if they pay a dollar for every dollar of rights

that they get

It is important to design IP rebates to provide the appropriate level of rights to

each person without creating perverse incentives. If an IP rebate program is strictly revenue
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Table 3.3: Bills by time of electricity use. CPP and CPP-IPR generated lower bills than
time-invariant rates would have for these California CPP customers. IP rebates rescheduled
savings into critical periods. Data: California State Wide Pricing Pilot CPP customers,
described in section 3.8.2, CPP-IPR benchmark offers described in section 3.9.3.

offpeak peak critical annual total bill
Time Invariant 84.6% 14.1% 1.3% $939

(% of bill and total kWh’s used)
CPP 71.4% 23.8% 4.8% $909

CPP-IPR 77.6% 24.9% -2.4% $909

neutral because it charges customers a dollar for every dollar of rights they get, the marginal

change in bills with respect to a change in rights levels is zero. Thus, customers and utilities

are economically indifferent about how many rights they get and face the same marginal

incentives as CPP. This section considers how to use strict revenue neutrality to preserve

incentives in the assignment of a rights level, in preventing customers from cashing in rights

and then exiting the program before they paid for them, and in giving utilities the right

incentives to call events.

Customers’ electricity use is an important – but manipulable – signal about the

quantity of rights a customer needs to avoid bill increases from critical peak events. If our

IP rebate system uses customer consumption to adjust the number of rights we sell them,

it is important to do so in a way that avoids creating perverse incentives. If a system lets

a customer increase the value of the rights he gets in future periods by using more power

now, it would implicitly change the price of present power consumption unless it increases

the customer’s future payments by an amount equal to the increase in rights. Consider a

provision that gives the customer an extra $1 worth of rights if they increase consumption

by q∗. If the provision increases their contributions by $1 for every $1 of rights that they

get, it does not affect their incentive to increase consumption by q∗. If it changes their

contributions by less (more) than $1, it creates a perverse incentive to (not to) increase

consumption by q∗. Section 3.7 takes up this issue in more detail.

A clever calendar can help ensure person-level revenue neutrality

Sloppy handling of customer exit in mid-year or of under-contribution could break

the person-level revenue neutrality. A clever calendar that concentrates events at the end of

the fiscal year can, however, ensure that customers buy and pay for property rights before

they have a chance to use them. This means that customers cannot profit from the program
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by strategically entering for just the peak season, claiming rebates, and then exiting the

program. A calendar that clusters events at the end of the fiscal year also means it is always

possible to reduce credit sizes if customers use too little power during a month and prevents

customers from using rights during the summer and then underpaying for them in the fall.

This calendar would make customers who leave CPP-IPR before the end of a fiscal year

eligible to cash in their unused rights. This is preferable to leaving customers who exit

owing the utility money or leaving their neighbors to pay for their rights.20,21 A standard

fiscal year facilitates making equitable, revenue neutral program revisions since everyone

would experience new charges or benefits at the same time.

Ensuring that customers get the rights they paid for

A good CPP-IPR implementation needs to handle year to year fluctuations in the

number of times that weather and equipment problems justify critical events, while a CPP-

IPR rate is designed to return the funds it raised to customers during a preset number of

rebate opportunities per year. An attractive way to deal with this is to return the fixed

credits for any unused event days. In other words, the customer would get the rebate they

would have received if the critical periods had been called and the customers used zero

power during the period.22

3.4.4 Psychological criteria suggest offering customers consistent rebates.

If customers dislike paying critical prices or experiencing bill spikes, then we can

sell customers enough rights to ensure that most customers receive rebates during each

billing cycle containing an event.23 The IP rebate design means selling customers more

credits will not reduce utility revenue or distort incentives. Thus, we aspire to provide most
20If customers are reluctant to contribute through declining blocks now to pay for future benefits, we could

phase in the program with an abbreviated first fiscal cycle that began in late spring and called proportionally
fewer critical events.

21The fiscal year approach would require a special rule, like calling new customers for a reduced number
of critical events during their first year.

22Refunding the unused rights rather than calling an event will slightly reduce the utility’s revenue since
the utility forgoes the possibility of charging customers the critical price – in a way that is identical to the
loss that a utility would take if it failed to call a critical day that it could call under a conventional CPP
rate. Thinking about how to get incentives to call critical days right is an important issue, but is beyond the
scope of this paper. By contrast, if utilities could simply pocket the fixed credits from unused event days,
they would have a fairly strong incentive to not call events.

23Analogously, the US income tax system is tuned so that many citizens withhold too much and get
refunds when they file rather than writing large checks.
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customers with “consistent rebates”.

Offering rebates so broadly may have some minor downsides. IP rebates might

create incentives for customers to actively manage their air conditioning use at the cost

of reducing their awareness of the total cost of their air conditioning. Customers might

misinterpret consistent rebates as a sign that they were already managing their peak use

well – especially if they were less motivated to find gains than to avoid losses. Ranking each

customer’s rebate size might avoid this misinterpretation by sending messages like “7 out

of 10 of your neighbors earned significantly bigger rebates than you did last month.”

We need to the amount of rights that the rate offers each customer carefully to

deliver consistent rebates that the customer can fully fund through a declining block that

is consistently inframarginal and keeps marked up offpeak power cheaper than the time

invariant price. Section 3.8.4 shows that it is not hard to make offers meeting these criteria

for most California customers.

3.5 A formal introduction to CPP and CPP-IPR

This section analyzes CPP and CPP-IPR and formally establishes that IP rebates

are revenue neutral and preserve marginal incentives.

Consider a CPP rate with three periods: low-priced, offpeak periods (denoted

“L”), higher-priced, peak hours (“H”), and the highest-priced, critical hours (“c”). During

month m, denote the set of critical hours Cm, higher-priced, peak hours Hm and low-priced,

offpeak hours Lm. The quantity of power that the customer uses during period i is Qi.24

The rate sets prices for each period, denoted PH , PL, and Pc.25 The total monthly bill,

TCCPP
m , under this rate is:

TCCPP
m = Pc

∑
c∈Cm

Qc + PL
∑
L∈Lm

QL + PH
∑

H∈Hm
QH

3.5.1 A formal overview of CPP-IPR

IP rebates change the presentation of CPP by adding charges and credits that sum

to zero and that retain CPP’s marginal incentives.
24Characteristics that vary by customer – like quantity consumed, Qi – appear in sans serif.
25Rate characteristics like PL and miscellaneous entries appear in the math typeface. Rate characteristics

reflect local system costs and this document generally takes them as given in designing an IP rebate system.
Section O lists the notation used in this document.
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Consider a rate that calls Nc critical events per year and a month m in which the

utility called Nm ≤ Nc events. The rate includes a declining block that imposes a markup

of M on the first QD
26 kWh.

3.5.2 Offering the right to units at the regular price and rebates is equiv-

alent to offering an incentive-preserving fixed credit

There are a variety of ways to describe the rights that CPP-IPR customers get

during critical events. Explanations for customers like table 3.2 report that CPP-IPR

customers get access to up to qR of power at the normal price, typically PH , during a

critical event. Section 3.4.1 discusses the rationale for that presentation. Further, if they

use qe < qR they get a rebate of Pc − PH per unit for any unused rights, qR − qe. Writing

this out and multiplying through shows that this is mathematically equivalent to offering

each customer a fixed credit that reduces bills by R = (Pc − PH)(qR) during each event.

TCCPP−IPRe = PHqe − (Pc − PH)(qR − qe)

= PHqe − PHqe + Pcqe − (Pc − PH)(qR) (3.1)

= Pcqe − (Pc − PH)(qr)

= Pcqe −R (3.2)

Equation 3.2 makes it clear that CPP-IPR customers face the same price, Pc,

during an event as CPP customers do, but get a lower bill because they receive a fixed

credit of R. Equation 3.1 shows that the two formulations are equivalent because the sum

of the usual price PH and the forgone rebate, Pc − PH is equal to the critical price, Pc.

Customers who use qe > qR pay Pc for their marginal power use. The calculations

to show the equivalence between the two descriptions are analogous and are omitted here

for brevity.

The balance of this analysis describes IP rebates as providing a fixed credit of R

to both simplify its notation and draw attention to the fact that the credit of R does not

affect the marginal incentive.
26IP rebate designers choose values for the variables listed in bold, including QD, R, and qR.
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3.5.3 CPP-IPR Total bills and revenue equivalence for customers who

buy all the rights the rate offers

This section defines the CPP-IPR monthly bill in the well-behaved case where

customers buy Qm ≥ QD kWh in each month m.27 Thus, they purchase all the rights the

rate offers them, namelyMQD worth of rights per month. This sets up the proof that CPP

and CPP-IPR generate the same total bill over the course of a year. These contributions

provide customers with power rights worth R during each of Nc events. Revenue neutrality

requires that the amount the customer pays through the purchase of marked up units equal

the value of the rights the customer gets back, formally that 12MQD = NcR.28

Section 3.5.5 considers the analogous general case that maintains revenue neutral-

ity even if customers buy less than the planned MQD worth of rights in some months.

This customer’s total monthly bill, TCCPP−IPR
m , will be:

TCCPP−IPR
m =MQD−NmR+TCCPP

m =MQD−NmR+Pc
∑
c∈Cm

Qc+PL
∑
L∈Lm

QL+PH
∑

H∈Hm
QH

3.5.4 CPP-IPR generates the same total annual bill as CPP for each

customer

Each customer pays the same amount over the course of a year on a CPP-IPR

rate that they would pay on the underlying CPP rate. The total annual CPP-IPR bill,

TCCPP−IPR
a , is simply the sum of the monthly CPP bills, TCCPP

m , plus exactly offsetting

rights and charges. We can see this by computing the total annual CPP-IPR bill, rearranging

terms, and recalling that 12MQD = NcR, as follows:
27IP rebates change seasonal bill patterns by raising CPP bills by up toMQD each month and returning

that money during (typically summer) months with events. A section below discusses how impacts on
seasonal bill patterns vary by region. Most areas’ highest use season coincides with the California summer
peak, but usage in other regions peaks during the winter.

28I present these examples without calculating interest on the contributions to keep the algebra simple.
It is technically correct to equate the two values in net present value, formally:

∑12

m=1
(1 + r)

m
12MQD =∑12

m=1
(1 + r)

m
12NmR where r is the annual interest rate. The interest-free approximation differs from the

net present value by less than the interest rate r, a few percent. Ensuring that the net present value of the
rights and charges match exactly would require making minute adjustments to the value of the rights, R,
depending on the distribution of event dates, since designers have to set rates before the fact using estimates
of when heat waves and equipment problems will cause critical days. Failure to adjust R or utility revenues
to compensate for the timing of events creates tiny incentives for the utility to earn extra interest by calling
events later in the year.
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TCCPP−IPR
a =

12∑
m=1

[MQD −NmR + Pc
∑
c∈Cm

Qc + PL
∑
L∈Lm

QL + PH
∑

H∈Hm
QH]

= 12MQD −NcR +
12∑
m=1

[TCCPP
m ]

= 0 +
12∑
m=1

[TCCPP
m ]

3.5.5 The general case: dealing with customers who do not buy all of the

offered rights

This section generalizes the discussion above to allow customers to buy less than

QD kWh of power in some months, which means that they did not purchase a full MQD

worth of rights. It maintains revenue neutrality by only selling customers the rights they

have paid for, R̂.29 Selling customers only the number of rights that they pay for is con-

sistent with treating this bill volatility control strategy as a well-defined property right –

which section 3.7 discusses further. The customer buys rights worth the markup times the

lesser of QD and their actual consumption, Qm each month. Formally, they buy rights

worth Mmin{QD,Qm} ≤ MQD.

This implies that customers own rights worth R̂c during event c. Customer level

revenue neutrality requires that the sum of adjusted right values equal the sum of customer

contributions, formally:
Nc∑
c=1

R̂c =M
12∑
m=1

min{QD,Qm}

Strategies to restore person-level revenue neutrality reduce bills relative to the

full contribution scenario during the months when the customer contributes too little and

increases bills during months in which the customers get a reduced credit of R̂c < R.

Reference dependent people may perceive these adjustments as a gain and a loss of the

same size, which they would take as a net loss since they weigh losses more heavily than

gains.30

The cumulative deficit, δm in month m, is a deficit in a customer’s purchases of
29Equivalently, we could return to the original plan by marking up more than QDunits of power and

buying the missing units in a later month.
30Customers may be equally frustrated that issues in the fine print of their offer letter are costing them

money.
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rights for future events relative to the value of rights that the rate slated for the customer.

The deficit grows when monthly consumption is too low, Qm < QD, and shrinks when the

customer gets fewer rights during an event.31 Formally, the definition is:

δm = min {0, NmR− δm−1 −M(QD −min{QD,Qm}} (3.3)

Formula 3.3 defines the cumulative deficit as the sum of that month’s deficit and

the previous deficit, less any amount of the deficit that can be applied to reduce the value

of the rights offered during events in that month. There can never be a positive deficit so

the deficit returns to zero after enough rights are applied to it.

We can ensure budget balance by offering rights each month worth

NmR̂ = max {0, NmR− δm−1 −M(QD −min{QD,Qm}}

Notice that this reduces back to the full contribution case considered above if the

customer buys at least QD kWh each month, so δm−1 = 0, min{QD,Qm} = QD, and

R̂ = R.

Using a declining block rate to fund rebates never creates a deadweight loss

This rate, unlike most declining block rates, does not create a deadweight loss

because every extra dollar that a customer pays for through this rate’s markup, M, comes

directly back to the customer as an extra dollar of rights.32

Customers who buy less than QD units on a typical declining block rate end up

paying M more for their marginal unit. This price increase reduces purchases and creates

a deadweight loss.

Formally, consider the marginal incentives for a customer to buy one more unit of

power during period i ∈ {c,H,L} for a month m when Qm < QD. Taking the derivative

with respect to the total annual bill shows that the cost of the marginal unit includes an
31This algebra, for simplicity, closes the entire deficit at the first available event. There are equivalent,

perhaps more palatable, approaches that would spread the reduction over multiple events where possible.
32Customers may not notice this subtle connection, but the markup is still unlikely to cause significant

distortions because many customers are unaware of whether the quantity they have consumed so far during
a month means they are paying a markup on the margin and because demand at the offpeak and peak prices
is quite inelastic. All we really need customers to know for CPP-IPR to work well is that there is some
economic reason for them to shift power use away from weekday afternoons, and stronger reason to shift
power use when the utility notifies them of a critical period.



www.manaraa.com

99

increase in price of M, but the increases in future rebates of M exactly offsets the price

increase:

∂TCa
∂Qm

= Pi +M− ∂δm

∂Qm
= Pi +M−M

3.6 IP Rebates generalize to many pricing challenges

IP rebates generalize to work with a wide variety of dynamic pricing plans that

improve incentives over uniform pricing for products which have underlying costs that fluc-

tuate over time. The generalized IP rebate approach will offer each customer:

• rights to buy a block of the product at the usual nominal price during the high priced

periods,

• rebates for any unused rights, and

• opportunity costs to purchase the product that are closer to the cost of production

during both the high and low cost periods.

Further, an IP rebate implementation will often cause a smaller change to the customer’s

uniform pricing annual bill patterns than a conventional implementation of dynamic pricing

would.33

The uniform pricing that we seek to improve can generally only survive in the

context of exclusive, long term relationships with a single supplier. Customers who choose

frequently among competing suppliers will purchase from firms with dynamic pricing during

low cost seasons. Further, cheap storage opportunities will smooth differences in cost over

time, so this approach will have the greatest benefits for products that are not cost effective

to store. It is common for companies to provide difficult-to-store products through long

term, exclusive relationships in utilities, in telecommunications, and in services like shipping,

answering phones at call centers, or technical support.
33This IP rebate approach will not change a customer’s uniform pricing bill patterns at all if the customer

has zero demand elasticity and consumes the average ratio of peak to off peak power. In other words, the
customer who sees no bill impact is neither gaining nor losing from the price insurance inherent in uniform
pricing. By contrast, consider a customer who simply buys the product during the lowest cost season and
uniformly spread her demand among seasons under uniform pricing. She would see a larger change under
IP rebates than they would under conventional dynamic pricing. Under both pricing schemes, this customer
will shift all of their spending to the low cost season. Under an IP rebate scheme that marks up the product
during and then returns those markups during the low cost season, her bill increase (decrease) would be
larger during the low (high) cost seasons than it would be under the conventional dynamic pricing approach.
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I simplify this discussion by assuming that the firm prices at average marginal cost

plus a uniform markup. The uniform markup makes the firm indifferent between selling

high cost and low cost units of the product.34,35 This assumption makes the terms “high

cost periods” and “high price periods” interchangeable in the discussion below.

Intuition: Uniform pricing makes customers pay a markup during low cost periods

that covers extra production costs during high cost periods. We can set opportunity costs

that better reflect production cost during each period. Then we can divert each customer’s

markup to buy him a credit that he can either either use to buy the product during high

cost periods or keep as a rebate. These markups can preserve the nominal prices during

low cost seasons and the credits can preserve the nominal prices during high cost seasons

for every unit that the customer buys rights to.

Proof: We can decompose the uniform price paid during low priced periods into

the low cost and the markup, then applies the total markup paid to buy an equal value

of refundable rights to buy a fixed quantity of power at the uniform price during the high

priced period. Specifically:

Consider a market with low and high cost sets of time periods with prices P̄L and

P̄H respectively. The high price can be decomposed into the low price plus a price increase,

formally P̄H = P̄L + ∆P .

Let fH be the fraction of all consumption at uniform prices Pu that takes place

during high cost hours. Then, setting a uniform price of Pu = P̄L + fH∆P will raise the

same amount of revenue as would selling the same amount of product during each time

period, but charging P̄L and P̄H for it. Let Mu = fH∆P be the markup that customers

pay during low priced periods to offset the cost of the expensive product. Then customers

who buy the population average proportion of the product, fH , during high cost periods

pay in exactly as much in markups as they get back in reductions of the price of the high

cost product.

We can move prices closer to costs by setting each customer’s peak period oppor-

tunity costs to P̄H and converting each customer i’s payment of QiLMu into a bill credit of

R that the customer gets regardless of his critical period use. An IP rebate style description
34Adams and Yellen (1976) show that pricing that makes the firm indifferent between selling two different

products can be part of an optimal bundling strategy.
35Changing to either kind of dynamic pricing will generally change the total quantity that the firm sells

and often change the seller’s profits. I ignore the profit issue here because utility regulators can adjust rates
to ensure that the utility earns its rate of return despite the change in quantity and because any welfare
improving change in pricing creates a potential Pareto improvement that can increase firm profits.
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would present this as rights to buy qR = QiLMu

P̄H−P̄u
units at the uniform price of P̄u where

QiL is the customer’s consumption during low priced-periods. Offering a rebate P̄H − P̄u for

each unused unit to make the opportunity cost P̄H . This approach also implicitly lowers

the opportunity cost of consuming off peak to PL because the customer gets every cent they

pay through the markup ofMu back. This strategy moves opportunity costs closer to true

costs while maintaining nominal prices.

That strategy generalizes to pricing schemes that further subdivide the high and

low cost periods into any number of subsets. The generalization requires that the customer

pay markups during low priced periods that equal the value of the rights the customer gets

back during the high priced periods, or:

∑
i∈L
Mi

uQ
i
L =

∑
h∈H

Rh

if L(H) represents the set of low (high) cost periods. It generalizes to a single high and

single low price period (e.g. CPP with just low and critical price periods), cases with a few

periods per subset (e.g. CPP with low, high, and critical periods), and to cases with a very

large number of price periods per subset (e.g. real time pricing that charges the market

price every hour).

3.6.1 This two period generalization does not perform as well as the

three-period CPP-IPR approach

This two period generalization is harder to explain to customers than the three-

period CPP-IPR approach and will not offer consistent rebates.

• Each customer get rights as a function of their usage. The fluctuations in rights levels

may be hard to explain to customers.

• This approach leaves the nominal price during low-cost periods at Pu. It may be

difficult to explain that customers pay Pu = PL+Mu, but that the opportunity cost is

really PL since the customer gets theMu component of the price back. Customers who

do not understand that the opportunity cost has dropped to PL may inappropriately

continue to consume as if the opportunity cost were the higher Pu .

• The two period implementation does not offer consistent rebates to most customers.
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Customer-base wide revenue neutrality implies that, in the absence of demand elastic-

ity, the average customer in the population would get rights to exactly as much power

as they use during high priced periods. Customers who use a greater than average

proportion of their energy during high priced periods will not get a rebate and will pay

the high price on the margin. However, demand elasticity will increase the number

of customers getting rebates. Elasticity increases purchases during low priced periods

that come bundled with rights and decrease the use of rights to buy expensive power.

Further, this approach creates winners and losers relative to uniform pricing. Cus-

tomers who used a smaller (larger) than the population average proportion of their power

during high-priced periods will see their total annual bills decrease (increase) under the

new pricing. For example, if Pu reflects the fact that the average customer buys 75% of his

purchases of the product during low cost periods, a customer who buys 80% of her total

consumption during low cost periods will see her bill for the same bundle drop because her

average unit will now cost .8PL+ .2PH rather than the uniform cost of Pu = .75PL+ .25PH .

The new pricing eliminates the cross subsidy that offering unlimited access to high cost

product at P̄u provides. This flaw is typical of dynamic pricing approaches unless they

are designed from the ground with complex, hard to explain and implement, features to

preserve existing cross subsidies and deliver a Pareto improvement.

3.6.2 Concentrating credits on selected parts of the high-priced period

can address these shortcomings

CPP-IPR works so well because it splits high cost periods into a set of “high”

priced periods without rights to buy at the usual price and “critical” periods that get such

rights. This is a generally applicable strategy that frees up cash to address some flaws in

a two-period IP rebate implementation. Marking up the same number of low priced units

while offering credits for fewer purchases creates a surplus of potential credits. This surplus

can be used to offer more customers consistent rebates, to reduce nominal offpeak prices,

or to implement a declining block and a fixed credit size.36

36I have made no assumptions about the proportion of unhedged hours in the unhedged high price bin –
so it is not clear how much cash is available to fund consistent rebates for more customers or to move to a
declining block implementation.
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3.7 Comparing CPP-IPR to other rates

CPP-IPR offers better economic incentives than existing, time invariant and baseline-

rebate rate designs, while being more compatible with customer decision-making heuristics

than CPP. The major existing rate designs are:

• Most customers are on time invariant pricing and seem satisfied. Time invariant

pricing gets prices wrong during almost all hours which leads to enormous waste and

to significant cross subsidies. Specifically, it charges a uniform price, Pu, during every

period. Pu is too high off peak hours and too low during peak and critical periods.

• Dynamic rates including CPP create significantly better incentives than time invariant

rates but consumers resist signing up for them.

• Baseline rebate rates, discussed at length below, create dynamic incentives while us-

ing behaviorally astute rebate opportunities – but also create perverse incentives for

customers to distort their consumption patterns to become eligible for larger rebates.

Figures 3.2 and 3.3 graphically compare their incentives to CPP and CPP-IPR.

The rates that consumers accept include hedges or other features that dampen bill

volatility and reduce exposure to high prices by default, while the dynamic rates customers

reject generally make risk management optional if it is available at all.37 There may be both

good customer perception and conventional economic risk management reasons to manage

bill risks given the volatility of electricity prices. Borenstein (2007) reports that RTP leads

to significant increases in bill volatility, but that simple hedges can control that volatility.

It makes sense to make risk management that uses well defined property rights part of the

default rate.38

The existing rates that manage volatility generally fail to manage volatility through

well defined property rights and thus create flawed incentives. For example, time invariant
37The rights that IP rebate customers buy ahead of time have bill-volatility reduction effects that are akin

hedging by buying ahead on the futures market, but differ from conventional hedging in that there is no
unknown state of the world that affects the realization of the price of the commodity when the customer
uses their forward rights, although there is uncertainty about the number of critical events in each billing
period and about factors that affect demand during an event like weather and whether the event falls during
the customer’s vacations.

38It is clear that zero expected cost risk management or month-to-month volatility reduction would make
many customers happier for both behavioral and neoclassical reasons. IP rebates are in this category since
they provide features that reduce month to month bill volatility at zero cost to the consumer while their
dynamic pricing lets customers reduce their overall bill. Rational customers, however, should be willing to
pay only a very small risk premium to reduce the risk of a bill spike of a few tens of dollars (Rabin, 2000).
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Figure 3.2: These diagrams compare the plans’ marginal incentives during critical events
and peak periods, including the peak periods that may set baselines for the critical events.
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Figure 3.3: These diagrams compare the plans’ pricing of rights to access low cost power
during events.
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rates include a built in mandatory hedge that gives customers a use-it-or-lose-it right to

as much cheap power as they want. Customers use too much power during periods when

wholesale power is expensive and they would prefer to sell their rights if they could sell

them for their true cost. Time invariant rates and CPP-IPR ask customers to contribute

toward insurance against critical events year round, while plain CPP does not – so IP

rebates are a more incremental change from the time invariant status quo than CPP would

be. Baseline-rebate rates bundle a “free” hedge with electricity purchases during baseline

setting periods – which are typically weekday afternoons during the hottest months – which

creates a perverse incentive, discussed at length below, for customers to consume more

during the baseline setting periods to get more rebates during events. Baseline rebate rates

introduce perverse incentives because they succumb to the temptation to develop ad hoc

solutions to provide rebates and create incentives to shift away from critical periods rather

than doing so with well defined property rights.

Dynamic rates generally offer the foundations for fairly well defined property rights,

but generally include no volatility management by default and – at best – leave it to cus-

tomers to acquire this kind of hedge separately. Bundling default rights that are priced at

marginal cost addresses this omission. Doing so is a major step forward, but the remain-

ing challenges include choosing the level of protection and paying for it in ways that are

economically efficient and psychologically attractive.

There are compelling psychological and economic reasons to make a revenue-

neutral volatility dampening mechanism or actuarially fair hedge the default.

• Making it a default minimizes transaction costs. The bill shocks that are involved are

fairly small, and do not justify customers’ spending hours to understand plans and

choose a hedge.

• People often refuse to choose when they face too many choices (Iyengar and Lepper,

2000; Dhar, 1997); and are strongly influenced by default offers (Choi et al., 2003).

• Incentive preserving rebate type interventions are designed not to affect marginal in-

centives or annual per-customer revenues. A revenue neutral bill volatility reduction

strategy – like those proposed in IP rebates – has no effect on total annual bills, so

economically rational customers who really understand the program should be nearly

indifferent between the default IP rebate eligibility-size offers and a menu of alterna-

tives. Similarly, an actuarially fair offer has zero impact on total bills in expectation.
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3.7.1 IP rebates avoid the economic flaws in baseline-rebate rates

Some utilities have used baseline-rebate rates that are superficially similar to IP

rebates. Baseline-rebate rates calculate a personalized baseline demand level from each

customer’s consumption history and then offer rebates to customers who use less than their

baseline level during critical events. Baseline rebate programs, unlike IP rebates, create

troubling cross subsidies and create flawed incentives both during ordinary periods that are

used to set the baseline and sometimes during critical events.

Utilities have fielded baseline rebate rates in a variety of contexts. Utilities gener-

ally make every customer eligible to earn rebates because baseline-rebate plans are described

as containing only rewards for conservation.39 Thus, baseline rebate programs tend to ex-

pose far more customers to improved incentives than opt-in dynamic pricing programs do.

Wolak (2006) analyzes an experiment with a baseline-rebate dynamic pricing program in

Anaheim, California and reports that consumers reduced use during critical periods but

many customers exploited the poor incentives. San Diego Gas and Electric has proposed

offering all of its customers a “Peak Time Rebate” rate based on the Anaheim design.40

California utilities offered a “20/20” baseline rebate plan during its electricity

crisis that offered customers a 20% rebate on their electricity bill if they reduced their

total summer electricity use 20% below their use the previous summer. California Utilities

offered a “10/20” natural gas baseline rebate program during a price spike in Winter 2005-06

that offered a 20% rebate for reducing gas consumption at least 10% relative to the previous

winter. Utility staff and regulators report that they dislike baseline-rebate rates. The section

below describes how baseline rebate rates work and then lays out three significant flaws

of baseline-rebate rates: perverse incentives during baseline-setting periods; inconsistent

incentives during critical periods; and significant revenue impacts.

Baseline rebate mechanics: A baseline-rebate rate customer gets rebates for

getting consumption below their baseline usage level, which is a function of their “normal”
39Baseline-rebate programs tend to include every customer by default on the claim that they provide only

rebate opportunities – carrots without visible sticks. They often quietly recover rebate costs by raising every
customers’ rate later. This means that some customers would have done better had they been able to opt
out of the rebate program and the responsibility to pay for it. PG&E’s proposal for its 10/20 baseline-rebate
program reads in part “[T]he 10/20 Winter Gas Savings Program is forecasted to pay out $200 million
in rebates...PG&E proposes that these costs...be recovered in residential and small commercial customers’
transportation rates during the summer gas season...” (Pacific Gas & Electric, b, 4).

40Both the Anaheim and San Diego rate designs comply with a California law, AB1X, that limits aspects
of utility rates and makes it difficult to implement CPP. AB1X will sunset once a set of obligations from the
California electricity crisis are paid off and may get amended or repealed even before that date.
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behavior during similar, but non-critical periods.41 The baseline amount for a baseline-

rebate program applied to critical electricity periods, Q̄bt, is generally the customer’s average

use, qt−i,H, during the set of Nb weekdays afternoons or peak periods (hence the subscript

H), t−Nb · · · t− 1, before the event at time t.

Q̄bt =
1
N

n∑
i=1

qt−i,H

The customer’s total bill under a baseline rebate plan is:

TCbaseline = PL
∑
L∈Lm

QL + PH(
∑

H∈Hm
QH +

∑
c∈Cm

Qc)− PB
∑
c∈Cm

max{0, Q̄bt − Qc} (3.4)

Baseline-rebate rates create perverse incentives during baseline-setting

periods. Baseline-rebate rates bundle free baseline rights with power during baseline set-

ting periods. This makes power artificially cheap and gives customers incentives to increase

usage during baseline setting periods. Sometimes the rates offer a negative cost of power

during baseline setting periods that pays customers to use power. To see this, substitute

the formula for Q̄bt into the baseline-rebate bill formula, 3.4, and take the partial derivative

with respect to the quantity of power used during the baseline-setting period. The result is

as follows, assuming for notational simplicity that the customer is getting a rebate:42

∂TC

∂Qi
= PH − PB

∑
i∈Bt

1
N

This formula also reveals that this distortion becomes small (large) as the baseline

setting period gets large (small). Making the baseline-setting period large, however, is likely

to include cooler weather in the baseline and thus to make it a less accurate estimate of

what people would have been doing on the critical day in the absence of an incentive to

conserve.
41Situations where the customer knows his true demand for electricity, but the utility can only knows

his usage level are asymmetric information games. It is generally difficult to design efficient mechanisms
to get customers to reveal their types. In the absence of mechanisms designed to minimize distortions,
customers have large incentives to strategically misrepresent their usual consumption during the baseline
setting periods.

42There is no distortion for customers who will never get rebates. And there is a tedious, unenlightening
corner case for customers who switch from no rebates to rebates as they use more during the baseline period.
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These bundled baseline rights create significant changes in incentives. For example,

San Diego Gas and Electric’s proposed baseline-rebate rate offers a 65 cent rebate for every

kWh that a customer’s period use is below a baseline set by the customer’average use on

the five non-event weekdays preceding the event day (Gaines, 2006). This means that San

Diego customers get another roughly43 1
5 kWh of baseline rights, worth 13 cents, bundled

with every baseline-setting kWh. Residential customers in San Diego pay between 4 and

18 cents per kWh of power (San Diego Gas and Electric).44 The bundled rights can be

worth even more if one day sets the baseline for more than one critical event if there were

fewer than five non-event weekdays between events. Anaheim offered a 35 cent rebate and

used the average of the consumption during the three highest use non-event weekdays of the

summer season as its baseline for every event. Since a single additional kWh consumed on

a baseline-setting day increases the baseline by 1
3 kWh over 12 events, this unit that costs

either 6.75 or 11.07 cents comes bundled with rights worth $1.40 to a customer getting

rebates (Wolak, 2006, 14).

This distortion is more disturbing because it increases demand for expensive power.

Baseline-setting periods are typically moderately hot weekday afternoons when wholesale

power is moderately scarce and expensive.

Baseline-rebate rates offer customers who have used too much power to

get rebates an unlimited amount of power at the usual price and does nothing

to give these customers an extra incentive to reduce usage on the margin during

events. The class of customers who generally consume more than their baseline quantity

during critical events will quickly learn that they cannot earn rebates and have no incentive

to conserve. Baseline-rebate rates, like time invariant rates, implicitly include the cost of

mandatory, unlimited critical period price insurance in the price of basic electric service.

These are expensive programs that create cross subsidies and uncom-

fortable trade offs: Baseline-rebate rates are not revenue neutral for individual customers

which means that baseline-rebate programs create unpredictable rebate costs that utilities

will need to recover later. Utilities recover the costs of the rebate program by marking
43San Diego’s proposes to set its baseline by multiplying the average consumption during the baseline-

setting period by a scaling factor, namely the ratio between the system wide demand on baseline-setting
days and the critical day. This lets them correct for differences in demand – especially in weather-driven air
conditioning demand – between the baseline-setting and critical days.

44Most California utilities – including San Diego Gas and Electric and Anaheim Public Utilities – use an
increasing block rate structure that offers the first few kWh per month at a low price, then increases the
marginal price as customers use more.
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up power during all the non event periods, which can create inequitable cross-subsidies.

Thus baseline levels can be mistakes since they both transfer cash among customers and

create incentives, while IP rebates’ choice of qR neither creates incentives45 nor transfers

cash among consumers. Hence, baseline-rebate designers aspire to calculate baselines that

reflect precise predictions of how much each customer would have used in the absence of

the rebate opportunity. The limited data available to regulators and significant, normal

day-to-day variation in power use mean that many customers’ event usage would deviate

significantly from their baselines even in the absence of rebate opportunities. Customers

who get baselines above what they would have used on the day under the normal incentives

get socially expensive “structural” rebates , while customers who would use far more than

their baseline levels get no incentives to save.46 By contrast, IP rebate designers can choose

levels of rights that offer almost everyone rebates and are using a rate design that provides

a constant opportunity cost of Pc.

In sum, IP rebates avoid flaws in baseline rebate designs. The flaws in

baseline-rebate rates reduce efficiency and focus attention on dealing with perverse incen-

tives, baseline estimation challenges, and the redistributive effects of the baselines rather

than the real challenge of reducing consumption during critical and peak periods. Baseline-

rebate rates offer customers opportunities to reduce their total annual bills through strategic

baseline-manipulation without lowering the social cost of electricity provision.

3.8 The political, organizational, and financial feasibility of

CPP-IPR: Evidence from California Customers

CPP-IPR implementations need to meet administrative and financial constraints.

Data from a California CPP pilot study shows that most customers meet the financial

constraints on CPP-IPR. The central, interlocking feasibility issues are:

• Administrative and political feasibility. CPP-IPR has to coexist with existing

analytic categories and be an incremental change from existing rates. It has to give

regulators the flexibility to address local equity concerns and distributional concerns.
45The underlying CPP rate creates the incentives in CPP-IPR; IPR’s simply presents those incentives in

a more palatable way.
46San Diego Gas and Electric also reports that more than a quarter of their customers had usage in

absence of the critical event that would have either given them a rebate or have given them a baseline that
would require them to reduce usage 15% before they got a rebate.
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• Economic feasibility. CPP-IPR works well if we can assign each customers a revenue

neutral pair of a rights size, qR, and a declining block size, QD, that is likely to work

well for the customer. An offer that works well has enough rights that it never leaves

the customer paying a high nominal price for power during a month that contains an

event. And the customer needs to use at least QDkWh during each month in order

to buy all of the rights that the rate offered the customer. Rebates are only feasible

if a customer’s demand pattern means that this kind of offer exists. Utilities need to

be able to make these offers using only limited information about customers’ demand

patterns and, probably, a limited amount of flexibility to customize offers.

3.8.1 The central economic feasibility constraints: consistent rebates, in-

framarginal declining blocks, and revenue neutrality

IP rebates make each customer an offer, (qR, QD), which specifies the quantity of

rights that the customer gets during each event, qR, and the number of kWh the declining

block marks up each month, QD. It is desirable for offers to meet the following constraints

for as many customers as possible:

i. Consistent rebates: The offer includes enough kWh at the usual price so that

the customer gets a (weakly positive) rebate during each month with an event, or

qR ≥ q̄c. In other words, the number of protected kWh, qR, has to be at least as

great as the customer consumed during the average event in the customer’s highest

average-event-use month q̄c = maxm∈M{Qc/Nm} .

ii. Consistent purchases through inframarginal declining blocks: Customers buy

all of the rights that the offer promised only if the declining block marks up less power

than the customer uses each month47, or QD ≤ Qm.

iii. Customer-level revenue neutrality: each customer makes payments for rights

equal to the value of the rights they receive. If the customer consistently purchases

QD per month (constraint ii) then, this becomes 12MQD = NcqR(Pc − Ph).
47I assume that qR and QD stay the same year round. Making seasonal changese to the declining block

size, QD, may be an important way to provide consistent offers. Requiring extra contributions early in
the year could provide a reserve fund to cover under contributions later. It may be particularly natural to
consider seasonal variations in QD orM in electricity systems that already seasonally adjust rates. Seasonal
adjustments, however, make rates harder for customers to understand.
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IP rebate offers must satisfy revenue neutrality constraint48 iii and aspire to do so

while meeting consistent rebate and inframarginal declining block constraints for as many

customers as possible. Throughout the discussion below, an offer is consistent if it satisfies

the consistent rebates constraint i and the consistent rights purchase constraint ii over the

course of a year.49

Substituting the first constraints i and ii into constraint iii, we discover a criterion

that determines whether an offer exists that marks up QD ≤ Qm each month and provides

consistent rebates, namely:

12MQm ≥ 12MQD = NcqR(Pc − Ph) ≥ Ncq̄c(Pc − Ph) (3.5)

Dropping out the middle terms that specify a revenue neutral offer creates a feasi-

bility criterion that depends only on customer characteristics and characteristics of the rate

that we take as given. The criterion implies that an offer exists only if:

12MQm ≥ Ncq̄c(Pc − Ph) (3.6)

Figure 3.4 visualizes the three constraints and their implications by plotting the

use during events on the x-axis and monthly use on the y-axis. The y-axis plots the offer’s

requirement that the customer use at least QD kWh per month. We can plot the customers’

use patterns that make Qm available on the same axis. The customer’s right to buy qR kWh

per critical event at the usual nominal price can be plotted on the x-axis. The customer’s

need to get q̄c kWh of rights to get consistent rebates can also be plotted on the x-axis.

IP rebate offers are consistent if they assign each customer a value of qR that

satisfies feasibility condition 3.5. Specifically, an offer is consistent if it provides consistent

rebates paid for through a declining block that the customer consistently purchases.

Providing consistent offers to most customers requires that the distribution of customers

have two characteristics:
48Any deviation from the revenue neutrality constraint means that the rebate program will sometimes pay

a customer more or less in rebates than they contributed to buy their rights, which creates flawed incentives
that customers can exploit.

49This project focuses on maximizing the probability of getting a consistent offer during each customer
year. Since Qmand q̄care a minimum and a maximum, respectively, so the more observations they consider,
the more extreme results they will report. From a policy perspective, it is interesting to know that the Park
family’s annual values of Qmand q̄csupported consistent offers in 19 of 20 years. It is less interesting to know
that calculating Qm’ and q̄c’ over 20 years picks up outlying values – like an extended vacation and running
the dryer during a critical period – and makes it impossible to find a consistent offer.
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Figure 3.4: Visualizing constraints 1-3.

i. Customer-specific rights levels, qR
i exist that satisfy feasibility condition 3.5 for most

customers.

ii. The organizations making offers have enough data to predict a q̂iR that satisfies fea-

sibility condition 3.5 for customer i.

Answering these questions requires data about the behavior of real customers on CPP-IPR

or comparable dynamic pricing. CPP-IPR is yet to be tested on real consumers, but there

are data on customers on economically-similar CPP rates.

3.8.2 The California Statewide Pricing Pilot offers important evidence

California’s Statewide Pricing Pilot (SPP) exposed about 500 customers to 27 CPP

events (Charles River Associates, c, 20) from summer 2003 into fall 2004 while collecting

survey data and recording hourly electricity use.50 This created a 15 month panel of data.

The SPP data are a powerful source of evidence about electricity use patterns. SPP data
50The SPP was a vast field experiment. The data considered here are from its largest cell, customers on

a CPP-Fixed Period (“CPP-F”) rate who experienced events that ran from 2-7PM, who were notified of
events by telephone the day before, and who did not get thermostats that could respond to price signals
automatically.
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are particularly relevant to the example CPP-IPR rate in table 3.2 since that rate is adapted

from an SPP Welcome kit (Pacific Gas & Electric, a).

3.8.3 Good IP rebate offers exist for most SPP customers

Figure 3.5 plots the constraints in the style of figure 3.4 with real data. Evidence

from the SPP suggests that 97% of customers statewide have demand patterns that satisfy

feasibility criterion 3.6 for the example rate.

The rectangular region above the diagonal line is the single offer that provides

consistent rebates to the largest number of customers. The graph shows that one size does

not fit all. The single-optimal offer is not consistent for customers outside of the rectangle.

It is not very surprising that the monthly usage of a small apartment in a temperate climate

is insufficient to pay for the level of rights required to provide consistent rebates for a big

house in the desert.

We can generalize this analysis to a family of CPP-IPR rates by rearranging feasi-

bility constraint 3.6 as a relationship between characteristics of customers and characteristics

of rates. This rearrangement yields:

12M
Nc(Pc − Ph)

≥ q̄c

Qm
(3.7)

The left side of this equation describes characteristics of the rate, while the right

side describes characteristics of the customers. The left side is the ratio of the rate’s ability

to raise money to the cost of providing each kWh of rights during each event. The right hand

side is the ratio of the the number of rights required to offer the customer consistent rebates

to the biggest declining block size that they consistently purchase. Figure 3.6 shows the

cumulative distribution of the right hand side of the rearranged criterion, 3.7, q̄c

Qm
and uses

it to see the percentage of customers who could get consistent offers under the IP rebates

that could be added to a variety of real CPP offers. It suggests that IP rebates work well

with three-period rates. IP rebates struggle with a two-period rate proposed by Pepco for

Washington DC customers for the reasons outlined in section 3.6.1. The figure also shows

that mindlessly implementing this IP rebate approach struggles with Ameren’s four period

rate and is less than ideal for Gulf Power’s four period rate, because they both split the

low priced period into a low priced rate and an intermediate, shoulder rate that is quite

close (.9 cents in Gulf Power; 0.14 cents for Ameren) to the time invariant rate. Markups
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Figure 3.5: Most California’s SPP customers’ demand patterns are above the diagonal line
defined by feasibility criterion 3.6, so consistent offers exist for them. But the single offer
that provides consistent rebates and rights purchases for the greatest number of customers
does not perform particularly well, so we should consider more customized offers.

that keep the shoulder rate less expensive than the time invariant rate often generate no

consistentoffers. Either imposing a larger markup (a four cent markup would keep prices

lower 64% of the time under Ameren’s rate) or sacrificing some economic efficiency by

reducing the price during the shoulder period (perhaps by adding more low priced hours to

it) could address these problems.

3.8.4 It is easy to predict consistent offers given readily available infor-

mation

The rate implementers need to be able to identify consistent offers for each cus-

tomer but will often not have data about how much power the customer used during hot

weekday afternoons. This usage level determines the level of rights the customer needs to
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Figure 3.6: Offer feasibility under a variety of rates: Rearranging criterion 3.6 to
12M

Nc(Pc−Ph) ≥
q̄c

Qm
lets us compute the percentage of California CPP customers for whom

consistent offers exist for real CPP-rates. This approximation assumes negligible demand
elasticity. Table 3.4 describes the rates pictured here.
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# crit. uniform peak off critical
Source of Rate rate hrs price price peak price 12(Pu−PL)

Nc(Pc−Ph)

(State) pds. 5Nc Pu PL price PH Pc
Pepco (DC) 2 60 7.92 6.81 6.81 63.98 .019
Ameren (MO) 4 32 7.64 7.5, 4.8 16.75 30.0 .020
Gulf Power (FL) 4 87.6 8 7.1, 5.9 11.7 32.6 .029
SPP Low Ratio
(CA)

3 75 PU PU − 1.2 PU + 9.8 PU + 41.8 .030

Example, Table
3.2

3 75 14.6 12 24 60 .058

SPP High Ratio
(CA)

3 75 PU PU − 5.09 PU + 11.64 PU + 60.91 .083

Table 3.4: The table describes the CPP rates plotted in figure 3.6. They have 2-4 rate
periods. Two-period rates have just normal and critical periods. The two period rate
presented here is designed to generate identical average bills to the time-invariant rate
and its IP rebate modification looks like the one proposed in section 3.6 and suffers the
shortcomings of taking approach to a two period rate that are described in section 3.6.1.
Three period rates have offpeak, peak, and critical rates. Four period rates further subdivide
the offpeak period into a low rate and a “shoulder” rate that contains hours during the
transition between the peak and offpeak periods. The four-period rates struggle to fund
rights because the shoulder rate is quite close to the uniform price. Adjusting the rate to
expand the shoulder period and reduce its average price or changing the IP rebate markup
structure would improve their performance. For example, basing a markup on Ameren’s
lowest price of 4.8 cents per kWh would yield prices that are lower during 64% rather than
90% of all hours, but would yield a 12(Pu−PL)

Nc(Pc−Ph) of .39 – which performs so well as to be off
this chart. The SPP called 5 hour events, so NC counts events assuming that they lasts 5
hours. I calculate the number of “5-hour events” that other rates call by dividing number
of hours of events that they call by 5. This table reports the summer prices of seasonally
varying rates. (Sources: Wilson (2006); Pepco; Voytas (2006); Ameren; Gulf Power; Pacific
Gas & Electric (c); San Diego Gas & Electric)
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get consistent rebates. Many utilities – including Gulf Power – will lack this information

because they only install “interval” electricity meters that provide disaggregated usage data

when customers sign up for dynamic pricing. California’s three major utilities plan to install

interval meters for everyone, but may want to offer dynamic pricing as soon as they install

the meters. Either of these scenarios would require the firm to make an initial offer to

CPP-IPR customers based on the data they already have, like monthly usage data from old

meters that provide only aggregate data, account type, and geographic data. The analysis

below shows that the data utilities have predict consistent offers quite well, so it appears

to be feasible to implement CPP-IPR.

In order to estimate the desirable offers using a conventional approach, we need

to identify an optimal offer from the set of consistent offers. Most customers’ use patterns

mean that criterion 3.5 defines a range of consistent offers between the smallest qR that

provides consistent rebates and the largest QD that the customer can buy each month.

For the purposes of this analysis, I selected the consistent offer, (qR
∗,QD

∗), that satisfies

criterion 3.5 in a way that is robust to the largest number of dollar deviations in total ability

to buy rights, 12Qm, and the needs for rights, Ncq̄c(Pc − Ph).51

This analysis proceeded in three steps:

i. I constructed an optimal offer qR,′04
i∗ for each customer. It specified the set of

offers that would be consistent for that customer-year, typically the year October

’03-September ’04.52

ii. I ran the following OLS regression: qR,′04
i∗ = α+β1∗useSummer02 +β2∗ClimateZone+

β3 ∗apartment +ε where useSummer02 is the customer’s average kWh per day during

three summer months the year before the experiment began, apartment is 1 if the ac-

count is in a multifamily building and zero if the account is a single family home, and

ClimateZone is a set of dummies indicating whether the account is located in each of

four mutually exclusive climate zones. Fog-belt zone 1 largely near San Francisco (the
51The optimal offer should minimize the likelihood that random variation would prevent the offer from

providing consistent rebates or purchases. This requires knowing the within-customer standard deviations of
rights needs,q̄c, and of the ability to purchase rights, Qm. The SPP data only tracks 27 events over 15 months,
so there are too few years and too little variation in exogenous factors like weather, economic conditions,
appliance upgrades, and family configuration changes to calculate meaningful standard deviations.

52I focus on the last 12 months of the 15 month sample where possible because the experiment enrolled
customers gradually, but ended abruptly, so looking at the initial 12 months would yield different date ranges
for different subjects. This would make the results harder to understand, especially because usage is heavily
weather driven.
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omitted category) is the coolest. The zones get progressively hotter and culminate

in desert zone 4. Table 3.5 shows that regressing the optimal offer calculated from a

12 month period in 2003-04 (qR
∗,QD

∗) on total summer usage in 2002 explains 76%

percent of the variation and that adding readily available variables about the climate

and whether the account is at a single or multifamily building improves the fit to

explain 78% percent of the variation.

iii. I used the results of that regression to predict a consistent offer, q̂i∗R,′04, for each

customer and determined whether it was consistent in the sense of satisfying criterion

3.5 for the values of (Qm, q̄c) for that year. The full regression predicts consistent

offers that satisfy criterion 3.5 for 80% of all customers for whom a consistent offer

exists. When q̂i∗R,′04 was not a consistent offer, it was typically substantively fairly

close to being a consistent offer. Half were less than 2.4 kWh of rights away from the

nearest consistent offer. That size of deviation customers would force customers with

too few rights to buy high-priced power costing no more than $1.44 per event.

iv. I tested a model from one summer’s ability to predict appropriate offers for another

summers which real rate designers need to be able to do. Most California scarcity

events take place in the summer months of July through September, and the SPP

called 21 of its 27 events during those months. The 15-month experiment contained

the important part of 2 years. This allows us to make some preliminary investigations

of how well parameters developed from one year predict for a different year. I went out

of sample to check whether q̂i∗R,′04 calculated from the year containing Summer 2004

(namely October 2003-September 2004) was a consistent offer that satisfied criterion

3.5 using the customers’ consumption patterns (Qm,03, q̄c,03) for the year including

Summer 2003, namely July 2003-June 2004. The out of sample universe contained

61% of customers. These customers had to be in the sample for two summers, and

had to have (Qm,03, q̄c,03) that was different from (Qm,04, q̄c,04). This implies that

either or both their their highest event use that set q̄cor their minimum consumption

that set Qmhad to occur between July and September.53 The out of sample prediction

53The SPP CPP treatment started in July 2003 and ran through September 2004. California’s electricity
demand (and scarcity) peaks during the summer, so we observe two separate summers but not two separate
years. A significant proportion of Zone 1, fog-belt customers used more during the winter events than during
any summer events. These customers set their their rights needs, q̄c, during the winter and thus get dropped
from the out-of-sample analysis which used summer 2004 data to predict summer 2003 needs.
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Table 3.5: Using an OLS regression to predict the optimal IP rebate offer in kWh per event
works well. Standard Errors in parentheses.

usage only model usage, climate, account type model
avg. daily use .78*** .80***
Summer 2002, kWh (.028) (.031)
climate zone 2 .84

(.621)
climate zone 3 -.45

(.668)
climate zone 4 -2.95***

(.869)
apartment -1.47**

(.466)
intercept 2.62*** 2.91***

(.452) (.644)
N 482 482
R2 0.764 0.781

of q̂i∗R,′04 was a consistent offer that satisfied criterion 3.5 using (Qm,03, q̄c,03) for 82%

of the out of sample universe.

3.9 Implementation concerns

3.9.1 IP rebates are a rate feature, not a whole rate, and leave significant

flexibility to rate designers

IP rebates are a revenue neutral feature that can be added to any CPP rate without

affecting its marginal incentives. Implementing IP rebates as a flexible feature that coexists

with a wide variety of rates preserves CPP rate designers’ freedom to meet local needs and

their ability to choose rates given limited information. Real CPP rates reflect compromises

between pricing near marginal cost, meeting revenue requirements, maintaining simplicity,

making incremental changes to the status quo, and treating rate payers equitably. CPP

rate designers choose a small number of rate periods and prices for each. These parameters

have reasonably transparent implications – unlike, for example, the choice of baseline-rebate

parameters. Further, CPP rate designers generally set prices without knowing short term

customer demand elasticities that Ramsey pricing would require. Ramsey pricing is most

economically efficient approach to meeting a utility’s revenue requirement by marking up
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the products it sells (in the case of CPP they would be offpeak, peak, and critical period

power and perhaps connection the electricity system) in a way that minimizes deadweight

loss (Hausker, 1986). The designers have to choose without knowing the marginal cost of

power in each period. Market power and policies that control market power and prevent

shortages make spot market electricity prices diverge from the marginal cost of power.

While IP rebates can be added to any underlying CPP rate, the number of cus-

tomers who get consistent offers is sensitive to the size of the difference between offpeak

and time-invariant prices because that difference is the upper bound on the markup, M≤
Pu−PL. Often the markup is a tenth of a cent less than the difference,M = Pu−PL− .001.

Larger markups mean that each kWh that the declining block marks up provides more

rights, qR. Thus, increasing the markupM expands the set of consistent offers by relaxing

criterion 3.7 (a form of criterion 3.6) which should allow improvements in the percentage of

customers’ getting consistent offers.

3.9.2 There are good policy reasons to divide customers into coarse sub-

sets

An IP rebate implementation can either make each customer a customized offer or

categorize customers and make an offer to each category. The quantitative analysis below

shows that making offers to broad categories of customers defined by use and geography

can make consistent offers to a large percentage of customers. Making offers to categories

of customers has compelling practical advantages over customizing offers because category-

level offers are easy to understand, seem fair, and discourage distortion.

A small number of offers and clear rules are an advantage for analysts, regula-

tors, utilities, and customers.

It is advantageous for a system to be easy for customers, utility staff, advocates,

and regulators to understand.

• Policy makers: It is easier for regulators and advocates to understand, discuss, and

tune a small menu of offers. It is easy to understand and adjust IP rebates’ seasonal

bill impacts if a large group of customers makes identical monthly contributions and

then get identical credits during each event. Categorical offers allow conversations

about the precise, category-wide impact rather than about average impacts. A rate
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will be easiest for regulators to work with if it makes offers to existing categories that

the regulators are already familiar with and used to treating as a unit.

• Customers: If customers understand why they got their offer and that their neigh-

bors got the same offer, they may be less likely to call their utilities with questions.

• Customer service: A simple system will make it easier to train call center staff,

reduce the number of questions about offers that the call center receives, and make

those questions quicker to answer. Broad categories may simplify the challenge of

assigning hedges to new tenants or to new buildings and of explaining this initial

decision to the customers.

Customers need to perceive the offers as fair

Every IP rebate offer gives a customer charges and credits that sum to zero over

the course of the year, and it is difficult to consider differences in offers unfair while focusing

on the zero annual effect bottom line. However, some customers will not know this and may

see differences in rebate eligibility as unfair. CPP-IPR should be designed to work well even

if some customers understand only that it is advantageous to reduce use of pricey weekday

afternoon power and more advantageous to reduce power use during critical events to earn

rebates. One step toward this goal is to maximize the number of customers who perceive

the program as fair based on superficial knowledge of their own hedges and those of their

neighbors and friends. Consumers’ lack of knowledge about the program and whether their

neighbors use electricity in a similar way makes it harder to maintain the perception of

fairness.

There are at least three components of perceived fairness in rate offers: offer equity,

process, and justice.

• Offer equity requires that (superficially) similar customers get similar rebate oppor-

tunities. Customers’ electricity consumption patterns determine their need for rights.

These patterns – and the equipment efficiency and habits that drive them – are often

invisible to neighbors. Thus, assigning rights by consumption patterns may be objec-

tively equitable, but appear inequitable to customers comparing bills over the back

fence.54 By contrast, assigning the same rights level to customers who live in similar
54Multiple, mutually exclusive notions of fairness come into play on most policy issues. Stone (1997)[39-41]
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buildings in the same geographic area may appear significantly fairer.

• Process fairness requires the use of transparent, objective category assignment rules.

The policy should articulate simple criteria that explain why two customers received

different levels of rights.

• Justice requires the rebate program minimize real and perceived opportunities to

profit through strategic efforts to exploit the program’s rules.

Avoiding consumption distortions by confused customers

One of the central design features of incentive-preserving rebates is that they do

not create incentives for rational, well-informed customers to distort their buying patterns to

profit by getting more rebates. It takes considerable analysis to convert a rate schedule like

table 3.2 and the fine print that would accompany it to uncover this incentive compatibility.

A significant literature reports that lab subjects do not respond as intended to incentive

compatible mechanisms in part because the incentive compatibility is often not obvious (See

Chen (Forthcoming) for a review).

It is important to avoid using mechanisms that set offers in ways that system-

atically induce customers to believe wrongly that they can benefit by manipulating their

demand to get more rights, qR, or reducing the number of marked up units, QD. Using

relatively immutable characteristics to set hedge levels can help achieve this goal. Utilities

know which climate zone each account is in and whether it is an apartment. Customers can

change these characteristics by moving, but even confused customers are unlikely to think

that the misunderstood incentives justify the cost of moving unless they were already on

the cusp of relocating. Using coarse total annual consumption bins to define categories may

be compelling because they predict well and are readily accessible to utilities and because

most customers have to engage in a prolonged, costly change in consumption to switch

consumption bins.

There are strong practical reasons to assign each customer to one of a small number

of categories and to make one offer per category. There is tension between using simple

rules based on immutable characteristics to categorize customers in a way that seems fair

and that minimizes distortion and the need to match customers with the right hedge-level.

performs a thought experiment about how to equitably decide who can eat a cake and comes up with eight
mutually exclusive notions of fairness.



www.manaraa.com

124

The balance of this section explores whether we can reach an adequate compromise between

the goals of categorizing customers and of ensuring an adequate fit.

3.9.3 Making offers using existing categories worked well

Employing categories that rate designers already use would facilitate the imple-

mentation of CPP-IPR. This section tests the feasibility of that approach by calculating

the optimal offers for each of the SPP’s categories of customers. The SPP divided the state

into 4 climate zones and each climate zone into three groups: apartments, high use single

family houses, and low use single family houses. It classified customers’ use levels as high or

low using consumption from the summer before the experiment began. The ceiling on the

low use category is 16 kWh per day in the coolest climate zones and rises with progressively

hotter climate zones to 28 kWh per day in the hottest climates.

The analysis shows that the SPP’s raw categories were not optimal because the

customers in the low use and apartment categories in the hottest climate zones were too

diverse for a single IP rebate offer to fit well. While the raw categories from the SPP per-

formed poorly, a set of categories that preserved most of the SPP’s distinctions and further

subdivided customers at each category’s median use level allowed us to make consistent

offers to the vast majority of customers.

The modified set of 16 categories took the SPP’s raw categories, discarded the

distinction between apartments and single family homes, and categorized all customers

using the SPP’s high and low use categories.55 The modified categories subdivided the

SPP’s high and low use categories at each category’s median usage level. This yielded very

low use, low use, high use, and very high use categories in each of the four climate zones

for a total of 16 groups. It discarded the apartment category because the sample only

contains about 500 customers. Retaining and subdividing the apartment category yielded

unacceptably small cells. Further, apartment status explains far less variation than does

total use.

Calculating the offer that is consistent for the greatest number of people in each

group yields a set of offers listed in table 3.6 and visualized in figure 3.8. These are consistent

for 86% of all customers statewide regardless of whether a feasible offer exists for that

customer. This approach sometimes outperformed the regression approach in part because
55The vast majority of apartments were low use.
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it used data on each customer’s whole range of consistent offers rather than a single point

representation of that range. This number reflects a 92% consistent offer rate in the more

temperate climates zones 1 and 2 and a 77% rate in the hottest climate zones 3 and 4. Five

percent of the customers in zones 3 and 4 have no feasible consistent offers.

The algorithm to determine the optimal set of offers for each category proceeded

as follows:

• It calculated the range of offers, [qR,i
min,qR,i

max], that satisfies feasibility criterion

3.5 for each customer, i. It ranges from the smallest offer that provides consistent

rebates, qR,i
min = q̄c, to the largest offer that the customer can consistently buy,

qR,i
min = 12MQm

Nc(Pc−Ph) .

• It used each customer’s optimal range [qR,i
min,qR,i

max] to calculate the proportion

of all customers in each group who would get a consistent offer for each value of qR.56

This yields an objective step function like that pictured in figure 3.7. Table 3.6

summarizes the 16 optimal offers and their performance in providing consistent offers,

while figure 3.8 displays identical information about the optimal offers but not about

their performance. The balance of this paper will use this 16-offer CPP-IPR rate as

a benchmark in calculating the impacts of CPP-IPR.57 The 16 analysis cells contain

both apartment and single family customers. The analysis used weights to make each

cell representative of the portion of the statewide population of accounts with its usage

and climate zone characteristics.

We can get from 16 to 9 categories without making any compromises by merging

groups with similar rights needs. Most often, these involve combining usage categories from

the same region or combining the same usage level in neighboring regions.58

56A future revision will use bootstrap resampling of the population to put confidence intervals on the
optimal offer estimates and the estimates of the offer’s performance.

57These results and the results below modify the example rate in table 3.2 by moving from the 15 events
per year that the CPP promised to the 18 events that it in fact called during the 12 months from October ’03
through September ’04. It reallocates the fixed credits by offering 15/18 of the Rvalue per event – reducing
the critical price from 60 cents to 54 cents. This is a very small implicit CPP rate reduction

58Specifically, we can make offers from the following offer ranges to each of the following sets of categories
{3VH, 4VH: offer 31.42-31.46 kWh of rights per event}, {3H, 4H, 1VH, 2VH: 25.83-26.00}, {1L, 2L, 1H:
10.15 - 12.79 }, and {3VL, 4VL: 6.13-6.36}. The four other groups would get their own offers, as listed in
3.6.
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Figure 3.7: The proportion of very high use customers in climate zone 3 for whom each
possible offer is consistent.
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Figure 3.8: Optimal Offers by Group: consistent offers for higher use customers and cus-
tomers in hotter climates provide more rights.
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Table 3.6: Optimal group offers: the range of rights values that provides consistent offers
to the greatest number of customers. This reports the percentage of customers for whom
consistent offers exist who get them.

proportion getting optimal range:
climate zone, use type consistent offers optimal range: lower end upper end
1 very low use .93 3.19 3.28
2 very low use .87 4.97 5.17
3 very low use .84 6.00 6.36
4 very low use .87 6.13 7.55
1 low use 1.00 7.61 14.21
2 low use 1.00 10.15 12.79
4 low use .81 14.30 15.13
3 low use .84 17.98 19.42
1 high use 1.00 9.65 18.04
2 high use 1.00 18.38 18.98
3 high use .85 24.15 26.00
4 high use .96 23.49 27.18
1 very high use 1.00 17.13 27.43
2 very high use 1.00 25.83 28.30
3 very high use .97 28.82 31.46
4 very high use .88 31.42 31.82

3.9.4 Offers that are not consistent are typically fairly close to being

consistent

Offers that are not consistent are generally pretty close to being consistent and

expose customers to only a few dollars per year of either exposure to critical pricing or of

reduced rebates. Specifically:

• The majority of the 9.3% of customers who did not get consistent rebates paid the

high marginal price in just one month. The weighted median (mean) customer who

did not get consistent rebates paid for 4.67 (8.23) kWh at the full critical price, which

cost $2.80 ($4.94).

• The rate marked up more power in at least one month than customers bought for 3.9%

of all customers. The mean amount of rights that these customers were supposed to

buy, but did not was a total of $3.65 per year.

• To put this in perspective, this sample of customers spent a weighted average of

$898.71 on power over the course of the year under the example CPP or CPP-IPR
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rates.

• Customers in hot climates 3 and 4 were roughly twice as likely to have too few rights

or to contribute too little as customers in more temperate climates 1 and 2.

3.9.5 Robustness of these offers to changes in weather, economic condi-

tions, and customer characteristics

Good rights offers need to work not only for the summer and customer-base that

they were designed for, but also for summers that have differing weather and economic

conditions and for an unexpected subset of the customers. A thorough exploration of these

issues merits a paper in its own right, but the results from some simple tests suggest that

the offers are reasonably robust. One promising way to understand the robustness of the

offers is to look for evidence about the engineering and social limits on power consumption.

If a customer would get consistent rebates despite running their air conditioner flat out and

turning on another major appliance like an oven or dryer, their offer is quite robust. And if

the customer is either never home to activate the other major appliance or is paying enough

attention to not do so during a critical event, then their offer also seems to be robust.

• 72% of all customers would get consistent rebates even if every event matched their

highest use event over the 15 month study. The other customers who got consistent

rebates did so by averaging an extreme event with lower-use events over the course of

a month.

• 47% of all customers would get consistent rebates even if they equaled their maximum

use weekday afternoon over the 15 month study. These customers appear to have

engineering or social limits that are likely to prevent them from using more power

than they have rights to.

• The median customer uses only 49.1% of their rights to get consistent rebates and gets

a declining block that marks up only 57.1% of the power that they use in their lowest

use month. Similarly the 75th percentile customer has only 71.3% of their power

marked up in their lowest use month and needs only 71.4% of their hedge to get

consistent rebates. Most customers get significant cushions that make their IP rebate

offers fairly robust to variations in conditions. Once we reach the 90th percentile,

however, the cushions largely disappear and customers have 93.7% of their use marked
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up in their lowest use month and need 99.0% of their hedges to get consistent rebates.

It’s likely that some of the marginal customers in the SPP experiment who needed

the greatest rights levels joined the experiment to contribute to knopwledge and earn

$175 but were not responding to price signals and would not opt in CPP-IPR.

3.10 IP rebates smooth seasonal bill variations in regions

where peak demand coincides with the system’s peak

demand

Consumers and policy makers both express a preference for bill levels that are

consistent from month to month. Many utilities offer balanced payment plans that send

customers bills of a constant size 11 months a year and then adjust for differences between

the preset payments and the actual charges in the last billing period of the year. Further,

some utilities have sold “flat bill” plans to a significant number of customers. These charge

the customer a flat fee that reflects their expected bill plus a risk premium on the order of

10% regardless of the customer’s usage.

IP rebates reduce CPP bills during critical periods and increase CPP bills during

the first QD hours each month. This shift of bills among hours also drives a bill shift among

months since the monthly contributions are spread evenly around the year, while most

critical periods take place during the summer months. Thus, IP rebates reduce seasonal

variations in bills for customers whose total use peaks during the season with the largest

number of critical events. IP rebates can amplify seasonal differences in regions where

electricity use peaks in a different season from the majority of the electricity use in their

system.

Figure 3.9 shows how these possibilities play out in California’s most temperate

and hottest climate zones. The top three lines on the graph show that CPP-IPR smooths

the air-conditioning driven, summer bill peak in the desert (zone 4). CPP-IPR amplifies the

modest bill peak in the zone 1’s temperate climate, where electricity demand peaks during

the winter in a summer peaking system.

The two intermediate zones have seasonal patterns between these two extremes.

Bills in Central Valley, climate zone 3, peak during the summer. CPP-IPR dampens this

peak, much as it does in climate zone 4. Climate zone 2 has the largest population of any of
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Figure 3.9: IP rebate rates (diamond) smooth a high summer peak in the climate zone 4
(desert) at the top of this graph but exacerbate modestly winter peaking bills in climate zone
1 (the temperate fog belt; largely the San Francisco Bay Area) at the bottom of the graph.

the four zones and includes much of the Los Angeles and San Diego areas, and some inland

parts of the San Francisco area. It has modest summer and winter bill peaks that increase

average bills from about $70 in the fall and spring to about $80 in the winter and summer

under both CPP and under time invariant rates. The example CPP-IPR rate eliminates

the summer peak, leaving the average customer with a modest winter peak.

Looking at customer-level bill volatility – as Borenstein (2007) did – yields qual-

itatively similar results: IP rebates reduce each customer’s month-to-month bill volatility

relative to CPP in climates that hit their peak consumption season when the system does

and increase each customer’s month-to-month bill volatility in regions where residential use

peaks in a different season than the statewide system does.
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3.11 Conclusion

Efficient incentives can be an important part of improving public policies. But the

obvious, natural implementations of efficient policies often repel customers who use flawed

behavioral decision making heuristics.

The evidence from this project and from a line of behavioral field experiments

suggests that behavioral insights can provide insights about the source of behavior that

serves neither individuals nor society well and suggest levers for interventions that address

this behavior. Using economics and psychology to guide the design of improved incentives

can often yield implementations that preserve the important economic properties of a policy

while helping some consumers make significantly better choices.

Incentive Preserving Rebates are an example of an intervention that preserves

incentives and revenues while changing the presentation of incentives to address a significant

set of psychological and implementation concerns. The behavioral considerations drive five

constraints, while implementation challenges add requirements like using a small number of

existing categories.

The evidence suggests that IP rebates are administratively feasible and that coarse,

categorical offers can meet the needs of most customers. Most customers will fully fund

rights that deliver them consistent rebates. Those who do not fully fund their rights or

who do not get get consistent rebates experience deviations in the form of payments at the

critical price or reductions in rights from the promised level that are typically less than 1%

of their total annual bill.

IP rebates smooth bills and reduce volatility relative to conventional CPP. IP

rebates are somewhat sensitive to customer diversity, but not nearly as sensitive as baseline

rebate rates are.

Changing the framing of prices is a well recognized tool in marketing. This appli-

cation to public policy may be the first of many important potential applications to help

people make better choices in areas like the purchase of energy efficient appliances and

vehicles or choices between owning a car and using public transportation.
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Chapter 4

Optimal Deployment of a simple

menu of Incentive Preserving

Rebates for CPP Rates with

Heterogeneous Customers

4.1 Overview and Background

This project articulates criteria for an optimal implementation of Incentive Pre-

serving (IP) Rebates under realistic constraints. The paper’s analysis uses electricity con-

sumption profiles from the California Statewide Pricing Pilot (SPP) to assess the perfor-

mance of simple, realistic implementations of an IP rebate rate.

Chapter 3proposes using Incentive Preserving (IP) Rebates to present critical peak

pricing in a way that is more attractive to consumers. IP rebates work by selling each

customer rights to either a rebate or a fixed quantity of power at the usual price during a

critical peak event. Customers buy these rights by paying a markup on the first few units

of power that they buy each month. An IP rebate implementation has to choose an offer

specifying

i. the number of kWh of rights, qR, that the customer gets per event and

ii. the number of kWh per month, QD, that the rate marks up to pay for these rights.
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Good rates choose offers (qR, QD) so that as many customers as possible:

i. get “consistent rebates”, because they purchase at least as many rights, qR, as they

use in the average event in the month with the highest average event use,

ii. make consistent rights purchases because they consume at least QD, the amount of

power that their offer bundled with rights, each month.

Offers that meet both constraints are “consistent”. Design constraints and budget balance

requirements fix a ratio between the quantity of rights that each customer gets during each

event and the number of units the rate marks up to pay for them (Chapter 3).1 Thus, there

is a tradeoff between providing enough rights (qR) so that larger customers get consistent

rebates and marking up few enough kWh per month (QD) that smaller and more seasonal

customers pay for all their rights each month.

Customers are unlikely to understand all the details of IP rebate pricing. Cus-

tomers with an incomplete understanding often know enough to respond rationally in the

way the IP rebate program designers desired. Instead, many will understand only that their

CPP-IPR rate typically offers rebates as incentives to save during critical period opportu-

nities and a predictable schedule of prices and rebate opportunities except in extraordinary

situations. Consistent offers fit this understanding. They create incentives to conserve

during critical periods through rebates, not surcharges, and they do so without activating

budget balancing surcharge or rights reduction provisions from the ‘fine print.’ Inconsistent

offers which fail to meet these expectations may confuse and annoy customers, but will have

no effect on a customer’s total annual bills, the utility’s revenue from that customer, or the

program’s marginal incentives unless they spur an unexpected change in customer behav-

ior.2 Thus, this paper addresses an optimization problem that is solely about being able

to offer accurate assurances to customers that the program is likely to work “as promised”

and then delivering on those pledges. Good dynamic pricing programs deploy limited mar-

keting resources and use limited rate flexibility to attract customers who offer the greatest
1(Chapter 3)discusses this design as a “declining block” rate. The industrial organization literature

describes the potential economic efficiency of declining block rates, but declining block rates are currently
banned in the state of California and perceived as encouraging the wasteful use of energy.

2Some customers may respond to paying a high price on the margin by reducing their use further during
future critical events. A neoclassical model would suggest that unexpectedly paying the high marginal
price would create only a tiny income effect, but loss averse customers and customers who have a mental
accounting rule of thumb that it is never OK to buy at the high marginal price might increase their response
to critical prices.
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reductions in peak and critical period demand.3 Desirable menus of offers assign consistent

offers to a large proportion of the customer population. Customers who perceive that the

program will not or did not “work as promised”, because they got an inconsistent offer may

be less likely to sign up and more likely to leave. Thus, this project explores the feasibility

and implications of offering category-level offers tuned to work particularly well for the most

desirable customers.

Judging IP Rebate offers by their ability to recruit customers makes sense because

IP rebates have very narrow impacts. IP rebate offers are a tool to make critical peak pric-

ing more attractive to consumers. They incidentally reduce month-to-month bill variation

where most critical events take place during months with the highest residential electric-

ity demand.4 Adding IP rebates to a CPP rate does not affect a customer’s total annual

bill, the utility’s revenue or the distributional implications of the rate. This revenue and

annual-bill neutrality requires that customers’ consumption under CPP with IP Rebates

be identical to the incentive-equivalent CPP rate. Their narrowness allows them to coexist

well with policies designed to affect revenue, incentives, and equity.

Rates should incorporate additional complexity only when its benefits in tailoring

offers to customers’ use patterns outweigh its costs. It is costly for regulators, utilities,

and consumers to develop, update, and understand complex rate features. Using existing

categories of customers that are familiar to regulators and utilities can reduce the cost of

tailoring rates. We can maximize the probability that each customer will get a consistent

offer via custom offers, this adds complexity. Using historical consumption to customize

offers can lead confused customers to increase their consumption in the hope of getting a

new rate that offers more rebates and profit opportunities. Using immutable characteristics

to make offers to broad categories of customers can avoid this problem.5

This project takes a preexisting assignment of customers to 16 groups6 and shows

that collapsing these groups into three categories based on consumption and geography
3Chapter 2finds that customers in hotter climates and customers with high total electricity respond more

to dynamic price signals.
4For clarity and brevity, this document’s wording often assumes that the critical events and the customer’s

highest bills take place in the summer because the electricity system is summer peaking with air-conditioning-
driven peaks. These assumptions are correct in most regions of the United States. However, almost all of
the statements about summer impacts can be generalized to winter- and dual-peaking systems by replacing
“summer” with “the season(s) with high residential demand and most of the critical events.”

5See Chapter 3 for an extended discussion of this.
6These 16 groups come from a modification of the consumption and climate zone categories that the

Statewide Pricing Pilot designers used. Chapter 3describes them in more detail.
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can perform 96% as well as does making the 16 optimal group-level offers. Using three

optimal categories far outperforms one- and two-category offers.7 Four and five category

offers perform modestly better than the three category offer. The optimal, three-category

offer assigns at least one group from each of the four climate zones to the low, medium, and

high use categories.

Finding that three offers can perform 96% as well as 16 optimal offers is very good

news. There are, however, two concerns about these offers:

• The high-performing rates get down to three offers, but are unable to achieve some

simplicity goals. These high performing offers categorize customers by overall energy

use and geography. Further simplifications that eliminate the need for data about

customer energy consumption would would simplify implementation. However, at-

tempts to assign customers to groups on coarse, purely geographic criteria perform

much worse. Making a single offer for everyone in the state also performs poorly. The

500-customer SPP data set lacks size to evaluate the effectiveness of making offers by

ZIP code or neighborhood – but creating a system that assigned every ZIP code or

neighborhood to even one of three offers would be complicated.

• Most customers get consistent offers under the optimal 3, 4, or 5 category approaches,

but some do not. The optimal three-category offer makes “consistent” offers to be-

tween 75% and 90% of the customers in most groups.8 The offer inconsistency reflects

both the limited predictability of each customer’s set of consistent offers, and the

compromises required to make a single optimal offer to a category of customers with

diverse needs.

Thus, IP rebate implementation in California would assign customers to categories
7This paper identifies and reports the characteristics of the optimal one-size-fits-all offer. We cannot rule

out the possibility that there is a two category offer that uses better customer-assignment data to perform
nearly as well as the best three category offer that collapses the 16 groups. The results here make that seem
unlikely. The two category offer is roughly the optimal two-category offer with its two smallest categories
collapsed into a single category which gets roughly the average of their offers of 6.5 and 14 kWh per event
and makes inconsistent offers on both its large and small customer fringes. Thus, an improved 2 category
offer that outperforms the best offer found here would have to selectively reassign the biggest of the small
group customers to the large category, so that it could make a smaller offer to the small category. There is
reason for concern that, even if such a high performance 2-offer rate exists, that many of its customers would
be forcefit into offers that were barely consistent for them, leaving its performance vulnerable to weather
shocks and that making changes to accomodate implementation concerns might have a large impact on its
performance.

8No consistent offer exists for about 3% of all customers. Even an omniscient system would be unable to
make these customers a consistent offer, so they are not in the denominator here.
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based on energy consumption or a proxy for it and would have to be comfortable with some

customers getting offers that are not quite consistent.

Brown and Sibley (1986, 7.3) is a similar intellectual exercise that uses simulations

to compare the benefits of a variety of rate structures, some of which are optimized for a

diverse group of customers. Orhun (2006) develops menus of products designed to maximize

profits from a diverse population of loss averse customers, but assumes that the customer

will choose from a menu of products rather than having the firm assign rates using visible

customer characteristics. Borenstein (2007) simulates the impact of dynamic pricing and

demonstrates the effectiveness of simple hedges using customer-specific characteristics to

set the quantity hedged.

The optimization in this paper that attempts to assign 16 geographic and con-

sumption based groups of customers to broader categories can be articulated as a mixed

integer linear programming problem. In particular, its structure is equivalent to the facili-

ties’ siting problem. There are extensive literatures (Wolsey, 1998; Velle, 1993; ReVelle and

LaPorte, 1996) and active research in developing more efficient algorithms to solve these

problems which are known for their computational difficulty. This paper develops and uses

a specialized algorithm that uses the problem’s structure to create a tractable, simplified

representation of it. The appendix describes the algorithm.

This paper proceeds as follows:

i. It describes the 16 groups of customers and the objectives and constraints on the

menu of offers.

ii. It then estimates the peak-period, energy use impact of exposing each of the 16 groups

of customers to peak and critical prices.

iii. The paper then converts these two energy use impacts into a single estimate of each

category’s summer season, deadweight loss reduction value per customer.

iv. The paper describes the assumptions about the relationship probability that a cus-

tomer’s offer is consistent to the probability that he signs up for dynamic pricing used

in the optimization.

v. It uses these estimates and assumptions to calculate value maximizing menus of offers.

We explore the implications of restrictions on menu sizes and on the nature of offers.
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vi. It compares the customization challenges that this optimization posed to the cus-

tomization challenges that other dynamic rates pose.

Sections 4.3 and 4.4 attempt to make reasonable approximations of the relative

value of each group’s response, but 4.6 finds that there are categories of groups of customers

with such similar optimal offers that the offers chosen at each size are relatively insensitive

to the exact value of each groups response.9

4.2 Objectives and Constraints

This project develops an optimal set of offers to customers given psychological,

economic and practical constraints.

4.2.1 Economic Constraints

This section uses notation introduced in Chapter 3.

IP rebates make each customer an offer, (qR, QD), which specifies the quantity of

rights that the customer gets during each event, qR, and the number of kWh the declining

block marks up each month, QD. It is desirable for offers to meet the following constraints

for as many customers as possible:

i. Consistent rebates: The offer includes enough kWh at the usual price so that

the customer gets a (weakly positive) rebate during each month with an event, or

qR ≥ q̄c. In other words, the number of protected kWh, qR, has to be at least as

great as the customer consumed during the average event in the customer’s highest

average-event-use month q̄c = maxm∈M{Qc/Nm} .

ii. Consistent purchases through inframarginal declining blocks: Customers buy

all of the rights that the offer promised only if the declining block marks up less power

than the customer uses each month10, or QD ≤ Qm.

9The situation is analogous to siting distribution centers to serve a set of clients. Determining the optimal
sites for distribution centers relative to the clients depends on measuring the number and cost of each kind
of shipment. If the clients are clustered in a few metropolitan areas, so that they are close together within
each city but there are large distances between cities, then a wide variety of shipment costs and frequencies
will drive us toward building one distribution facility roughly in the center of each cluster of clients.

10I assume that qR and QD stay the same year round. Making seasonal changese to the declining block
size, QD, may be an important way to provide consistent offers. Requiring extra contributions early in
the year could provide a reserve fund to cover under contributions later. It may be particularly natural to
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iii. Customer-level revenue neutrality: each customer makes payments for rights

equal to the value of the rights they receive. If the customer consistently purchases

QD per month (constraint ii) then, this becomes 12MQD = NcqR(Pc − Ph).

4.2.2 Political and Implementation Constraints

It seems to be a political reality that CPP-IPR will be deployed first as an opt-in

program and that customers will have to actively choose to leave their status-quo, time-

invariant rate to join the CPP-IPR program. This analysis assumes CPP-IPR will be offered

to all customers statewide.

This project operationalizes the goals of using existing categories by making of-

fers to categories formed by further aggregating 16 existing climate/usage level groups of

customers.11 Each customer is categorized by its membership in one of four SPP climate

zones. Each climate zone contains four power usage levels based on each customer’s pre-

experiment, summer 2002 average daily consumption. The SPP designated low and high

use categories for each climate zone using a climate-zone-specific threshold for membership

in the high use group, and this analysis subdivides each high or low use group at the me-

dian. Chapter 3 describe the construction of these groups in detail. This is one of many

ways to operationalize these simple menu from existing category constraints. It is hopefully

typical of the kinds of performance and challenges that we might expect from such an effort.

The current effort does not attempt to categorize customers in a way that maximizes the

similarity of the customers within each of the initial groups or to solve the exact problem

that a real California utility might, in part, because the data set is too small. Clustering

data into groups of similar customers is an active research area in operations research (Jain

and Murty, 1999; Verma and Meila, 2003).

consider seasonal variations in QD orM in electricity systems that already seasonally adjust rates. Seasonal
adjustments, however, make rates harder for customers to understand.

11Chapter 3reports that assigning each group to one of 9 optimally chosen offers can perform as well
as choosing one optimal offer per group. The finding that reducing from 16 offers to 9 yields zero loss of
performance is likely to be an artifact of the small sample size, but the loss of performance from going from
16 to 9 offers would probably be small as we increase the sample size.
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4.2.3 Objective Function

I assume that the utility is trying to choose offers (qR, QD) to attract the cus-

tomers who will offer the greatest reduction in peak load12 given that customers’ propensity

to sign up for CPP-IPR increases with the probability that they get a consistent offer that

meets the three economic constraints above. Thus, the offer’s benefits are roughly the sum

of the peak and critical demand reductions that customers in each group provide when they

sign up for CPP times the fraction of customers in that group who sign up.

Formally, the objective function is:

max
Ggk,Q

∑
g

AgVgP (F (Q))

where:
Ggk is a matrix of 1’s and 0’s recording the assignment of groups of customers,

g, to a smaller number of broader categories, k.

Q is a matrix specifying (qR, QD) for each category c

Ag is the number of accounts statewide that group g represents13

Vg is the summer period deadweight loss reduction value of customers in

group g. Specifically, Vg = (∆g
cDWLc + ∆g

HDWLH) where ∆k
i is group

g′s kW response to price i ∈ {c,H} and DWLi is the summer season

deadweight loss reduction value of changing consumption by 1 kW dur-

ing all hours in price period i. Section 4.3 estimates ∆g
i . Section 4.4

approximates the relative sizes of the two DWLi values.

F (Qg) is the probability that Qg is a consistent offer for a customer in group

g.

P() is the probability that a customer signs up for CPP-IPR as a function

of the probability that they got a consistent offer.
Subject to the following constraints:

12I assume that the utility is indifferent between customers reducing load altogether or shifting it other
time periods.
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kW impact weighted average
benefit ratio

critical TOU Peak impact 2.2x 6.7x
1 very low 0.016 0.133 0.052 0.031
1 low -0.013 0.025 -0.009* -0.011*
1 high -0.053 -0.149 -0.083 -0.066
1 very high -0.085 -0.395 -0.182 -0.125
2 very low -0.012 0.120 -0.008* -0.010*
2 low -0.048 -0.052 -0.049 -0.048
2 high -0.090 -0.220 -0.130 -0.107
2 very high -0.117 -0.429 -0.215 -0.158
3 very low -0.070 -0.062 -0.068 -0.069
3 low -0.113 -0.230 -0.149 -0.128
3 high -0.132 -0.393 -0.213 -0.166
3 very high -0.205 -0.740 -0.372 -0.274
4 very low -0.136 -0.256 -0.174 -0.152
4 low -0.179 -0.471 -0.270 -0.217
4 high -0.202 -0.570 -0.317 -0.250
4 very high -0.286 -0.869 -0.468 -0.361
*indicates a negative value was rounded to zero before computing the wtd. avg.

∑
kGgk = 1 each group is in a total of exactly one category.

.36 ∗ 15Rk = 12 ∗ .025 ∗QDk Customer level revenue equivalence. the

number of units, QDk that are marked up for

category k exactly pay the costs of the category’s

rights

Qi = Qj if ∃c such

that Gic = Gjc = 1

subject to the constraint that if groups i and j

are in the same category c, they get the same

offer.

4.3 The average magnitude of response of customers in each

group

This section estimates the size of customer response to CPP’s peak and critical

prices during the summer rate season. This section uses the same data, faces the same

estimation problems, and uses a strategy quite similar to that described in Chapter 2.

This section estimates critical impacts using the average conditions from the 15 critical

events that the SPP called on days with statewide loads above the 80th percentile of the
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Figure 4.1: Difference regressions show that big customers in the hottest climates responded
the most; and responded significantly more during critical periods than during ordinary peak
periods.
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distribution of 2003-04 summer season loads. Very high demand is typically a component of

the scarcity scenarios that would prompt critical prices and make reductions in electricity

use quite socially valuable. Generation and transmission problems are also often important

components of scarcity, but high demand makes the system far more vulnerable to these.

The ability to call 12 critical days allows operators to impose a critical price on nearly 10%

of days during the average summer season which contains 128.4, non-holiday weekdays.

The difference-in-difference and single difference versions of the three regression

specifications that use splines for temperature impacts in Chapter 2provide a variety of

estimates that tell qualitatively similar stories. The results reported in table 4.3 are cal-

culated with methodology identical to regression 5 in Chapter 2except that they use just

data from the “treatment” period and drop all variables identified from pretreatment data

alone. Figure 4.3 and table 4.3 shows that high use customers and customers in hot climates

respond significantly more to CPP than do customers in more temperate climates.

4.4 The value of response:

Section 4.3 estimates impacts on critical and peak period use separately. The

optimization in section 4.6 requires a single measure of each kind of customer’s value.

A TOU peak period every weekday creates incentives to conserve during far more hours

than do sporadic critical periods, but critical-period consumption has a much higher social

cost. Unless customers’ changes in use in response to peak and critical prices are perfectly

correlated,14 then it is important to consider the relative social value of responses to the

critical and peak price changes.

This section makes the impacts commensurable by approximating the two price’s

relative deadweight-loss-reduction benefits per kW. This allows us to minimize the dead-

weight loss from underpricing power during summer season critical and peak periods.15

Precise deadweight loss calculations require accurate demand curves and hour-

by-hour, weather-dependent marginal social costs. We have quite limited knowledge of
14If, for example, each group’s average customer reduced his use by exactly twice as much during critical

hours as during peak hours, then Section 4.6’s optimal offers would not depend on the relative importance
of peak and critical prices calculated in this section.

15A logical extension of this criterion would be to minimize deadweight loss round the clock and during
both winter and summer rate seasons. Quirks in the SPP rate make analyzing the winter season challenging.
Including round-the-clock summer impacts requires running a straightforward set of regressions and then
dealing with the likely fact that the results are likely to be substantively and significantly indistinguishable
from zero and to show a lot of small-magnitude point estimates that contradict economic theory.
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both. Most Regional Transmission Organization (RTO) electricity spot markets have weak

demand-side abilities to react to high-price and manage scarcity. They thus cap spot market

prices and often use side payments to ensure that there will be adequate of generation. This

approach causes electricity spot prices prices to understate the true social costs of scarcity.

Despite these interventions, wholesale prices that are well under $0.10/kWh in a typical

afternoon hour sometimes hit price caps that are typically $1.00/kWh ($1,000/MWh) and

a few very high prices often represent a significant part of the cost of summer energy. 16 The

available estimates of demand curves are imperfect and Chapter 2finds that the impact of

price changes on quantity demanded is quite sensitive to weather conditions which suggests

that the demand curve both shifts and changes slope as temperatures change.

A variety of utilities have deployed CPP rates. These rates attempt to offer cus-

tomer a Pareto-improving deal by moving prices closer to marginal cost, subject to a variety

of constraints.

There are, however, a variety of sources of evidence about the relative deadweight-

loss reduction value of a kW response during peak and critical periods.17,18,19 Table 4.1
16We could expand the analysis in this section with the simulated hourly prices from Borenstein (2005a)

and with data from regional transmission organization (RTO) markets. Indeed, the gold standard for
the present analysis would be to use daily weather conditions to link market prices to estimated change
in quantity demanded. Most RTO markets’ spot-market price series understate the costs of scarcity and
managing extreme demand. Dynamic pricing is likely to have the greatest value in markets experiencing
scarcity. Price-responsive customers can be a substitute for RTO markets’ more distortionary and costly
efforts to manage scarcity through non-price means. It might be an imperfect, but interesting analogy to
look at spot prices from an RTO market that is experiencing some scarcities that did not lead to the kind of
institutional crisis that California saw in 2000-01. Data from the Delmarva region (Delaware and the eastern
shores of Virginia and Maryland) of the PJM market might be a reasonable choice for this task as might be
ISO-New England’s Southern Connecticut region. The appropriateness of these data depends strongly on
exactly how the RTO’s strategies for managing scarcity affect the visibility of scarcity rents in its prices.

17See Borenstein (2005a) for an extended discussion of this and for an effort to simulate equilibrium
wholesale prices in the absence of these interventions. Borenstein and Holland (2005) prove that adding a
marginal customer to dynamic pricing offers the largest benefits when most customers are on time invariant
pricing and that the marginal benefits decrease in the number of customers enrolled.

18PG&E has filed a Business Case for its Advanced Metering Deployment that calculates the costs and
benefits of a critical-period only CPP rate. Ameren planned to conduct a cost-benefit analysis using evidence
from the trial with the rate discussed in table 4.1.

19Gulf Power’s Good Cents Select CPP program is a full scale, opt-in CPP program that may illustrate the
potential of the approach. Gulf Power’s claims that its 7200 customers’ response to a critical price signal is
equivalent to an 80 MW combustion turbine plant (White, 2005). Energy Information Administration (EIA)
estimates suggest that plant would cost $32,000,000 to build and that its fixed operating and maintenance
costs would be $880,000 a year (Conti et al., 2006). This comes out to averting a one-time investment of
$4400 and annual maintenance costs of $120 per customer from the critical price portion of the program
alone – before we factor in fuel and variable operating and maintenance costs. A careful engineering cost-
benefit study of its hour-by-hour social benefits and impacts on the utilities’ revenues might be useful to
policy makers in understanding both what to expect from dynamic pricing and in understanding how to
make dynamic pricing a win-win proposition for participating customers, utilities, and other customers.
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shows examples of these rates and the DWL ratios they would imply if the rates peak

and critical prices, PH and Pc, were the marginal cost of power during the peak and critical

periods respectively.20 This exercise attempts to glean significant insights by using evidence

from a variety of imperfect data points. These may be useful approximations of the bounds

on the relative size of the deadweight loss reduction during each period and to see whether

adjusting the periods’ relative importance within these bounds has much effect on the

optimal offer. If the optimal offer is highly sensitive to the choice of bounds, it would

suggest that the existing evidence is insufficient to optimize.

We find evidence that the value of a kW of reduction during TOU peak periods

is worth between 0 and 6.7 times as much in DWL as a kW of reduction during critical

periods. Thus, we will run the analysis below using the DWL ratio of 2.2 from the example

rate; and then run robustness checks with ratios of 0 and 6.7.

This analysis calculates the deadweight loss reduction values of each kW, a flow

variable, rather than kWh, a unit of energy, because its regressions estimate impacts on

per-hour flows (or, as other papers call them, kilowatt-hours-per-hour). Five of the six rates

considered here have daily afternoon TOU peak periods. These five rates have between 8.5

and 10.7 times as many TOU peak hours as critical hours. Thus each TOU-peak kW (or,

equivalently, kWh/h) of flow translates into 8.5 to 10.7 times as many units of energy –

Unfortunately, Gulf Power is not part of an organized energy spot market which limits the availability of
data about the kind of scarcity rents, market power and capacity market prices that CPP will affect in other
regions. Further, these are customers in a hot, humid climate who received automated thermostats.

A similar style of engineering analysis could calculate the social costs avoided per kW, or benefits Bi, of
peak and critical response as follows:

BH = ∆H(AnnualFixedCost/kW
NH

NH +Nc
+ (NH)(VariableCost/kWh))

Bc = (∆c−∆H)(AnnualFixedCost/kW+ ∆H(AnnualFixedCost/kW
Nc

NH +Nc
+ ∆c(Nc)(VariableCost/kWh)

BL = (∆L)(AnnualFixedCostL/kW + ∆L(Nc)(VariableCostL/kWh)

where ∆i is the change in electricity consumption in response to price i and Ni is the number of hours
in period i. The nature of the offpeak change in costs is likely to be qualitatively different from the peak
change in costs – since it is likely to reflect the cost of the increased use of fairly efficient plants that are on
the margin offpeak and perhaps the additional capital cost of substituting a few more efficient plants that
can now run more hours for less efficient plants.

Reasonable estimates of these costs are readily available from natural gas spot market prices, utility’s
costs of capital, and EIA data about one time capital costs and annual fixed costs of a combustion turbine
plant. Borenstein (2005a) makes this kind of calculation of the costs of building and operating all the plants
in a competitive electricity market in equilibrium with varying percentages of customers on real time pricing.

20The calculations here further assume that the cost of energy is uniform across the utilities’ service area,
but these calculations are easy to extend to incorporate the kind of locational cost differences that are
common in electricity markets.
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kWh’s – as does a critical period kW. This far greater number of kWh’s per kW flow allows

ratios that find that a TOU peak kW has more value than a critical kW, despite the fact

that there are far greater deadweight losses per unit of energy (kWh) during critical periods.

4.4.1 Approximating the size of reductions in deadweight losses

PEPCO’s rate has only critical and time-invariant periods. If this reduces dead-

weight loss as much as any rate that also raised prices every weekday afternoon, this would

imply that raising prices every weekday afternoon has zero benefit.21 The PJM spot market

prices from PEPCO’s service area are higher during weekday afternoons, which means that

PEPCO’s rate failed to address some deadweight loss. It is possible, however, that PEPCO’s

implication that only critical periods matter is closer to reality than any of the other rates.

Estimates of the cost of blackouts (“the value of lost load”) or of the highest market clear-

ing price in a perfectly competitive spot market (Borenstein, 2005a) are roughly 100 times

higher than the average afternoon marginal cost of power. Thus, it is worth considering the

case in which (nearly) all the benefits come from critical period power.

Estimating the size of deadweight loss requires making an assumption about the

demand function. This paper experiments with two demand functions. One assumes that

demand is linear but varies between peak and critical periods. The other assumes that

demand is a step function.

4.4.2 Benefit Ratios with a Linear Demand Function

If demand is linear, with different slopes on peak-priced and critical days, then

the deadweight loss reduction from charging PH instead of Pu for power that has a social

cost of PH is .5S(PH − Pu)2 where S is the slope of the demand curve. The critical period

slope may differ on critical days if a program phones customers to inform them of the high

price of power, as the SPP did. Further, the slope may differ because critical days tend

to fall on days when factors like heat and a relatively small number of people on vacation

combine to create extreme demand. We can back out the slope S given using the available

kW impacts of the peak and critical prices as S = ∆kW
∆P . This section’s approximation of

the relative value of a kW of demand reduction normalizes the ∆kW component of S to 1.
21PG&E is rolling out the same style of opt-in rate that adds critical periods to otherwise time-invariant

prices (Pacific Gas & Electric News Department).
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ratio of the
value of a
kW response,
peak to
critical

Source of Rate
(State)

summer
season
critical
hours

summer
peak
hours

ratio:
peak to
critical
hrs.

critical
price
diff, ρc

TOU
peak
price
diff, ρH

upper
bound,
step
func-
tion

linear

Pepco (DC) 48 0.0 0.0 56.1 -1.1 0.0 0.0
Ameren (MO) 40 341.7 8.5 22.4 9.1 3.5 6.7
Gulf Power (FL) 87.6 642.1 7.3 24.6 3.7 1.1 0.8
SPP Low Ratio (CA) 60 642.1 10.7 41.0 9.8 2.6 2.9
Example, Table 2 in
Chapter 3

60 642.1 10.7 45.4 9.4 2.2 2.2

SPP High Ratio
(CA)

60 642.1 10.7 60.0 11.6 2.1 1.9

Table 4.1: The relative sizes of summer season, peak and critical period deadweight losses
under a variety of CPP rates. Notes: Table 4 in Chapter 3presents more details about
these rates. The Ameren rate allows for the 10 critical periods reported in this table, but
only called eight during its experiment as reported in Chapter 3. The number of peak
hours is the average number of non-holiday weekday hours reflecting the fact that the
first two days in any partial week contain 10

7 weekdays in the average year and that any
additional days will be weekdays. Ameren has daily peak periods during a four month
summer season, while Gulf Power and the California SPP used a six month summer season.
The Gulf Power rate specifies that no more than 1% of all hours year round will be critical,
without commiting to any seasonal schedule of events. Gulf Power does call winter critical
events during unusually cold weather to deal with electric-heat-driven load. This table thus
presents the upper bound on the importance of summer critical periods in the Gulf Power
region. (Sources: Wilson (2006); Pepco; Voytas (2006); Ameren; Gulf Power; Pacific Gas
& Electric (c); San Diego Gas & Electric)
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The final optimization uses the ∆kWg value for each group from Table 4.3. Since the high

and low ratio rates’ impacts were statistically indistinguishable and the high- and low-ratio

customer pools had roughly the same size, Table 4.1 uses the simple average of the high

and low ratio price change as ∆P .22 Table 4.1 computes the ratio of the value of a kW

conserved during each TOU peak hour to a kW conserved during each critical hour as:

NH
1

∆PH
(PH − Pu)2

Nc
1

∆PH
(Pc − Pu)2

Where:

NH is the number of peak priced hours during the summer season.

Nc is the number of critically priced hours during the summer season.

∆Pi is the average price change during period i that California

Statewide Pricing Pilot customers experienced. Linear demand

implies that customers who experience different price changes in

other markets will respond by different amounts than the SPP

customers did.

4.4.3 Benefit Ratios with a Step Demand Function

The finding that customer responses to high and low ratio rates are statistically

indistinguishable suggests that linear demand curves may be an inappropriate model. Step-

function demand predicts that customers’ demand would be constant within price intervals,

which is consistent with our regression findings. Further, holding temperature constant, a

step demand function approximates the behavior of dynamic pricing customers who program

their thermostats to run their climate control systems less when prices hit threshold levels.23

However, finding a step demand function that predicts response to both the SPP and Gulf

Power’s rates is tricky. Gulf Power’s summer weekday afternoon price of 11.7 cents is lower

than the California rates’ time-invariant and offpeak prices for high use customers. Consider

CPP price, pi, i ∈ {H, c}, and the time-invariant price, pu. A family of step functions that

specify demand as a function of the price difference ρ = pi − pu can, however, model this
22Specifically, it uses average price increases of 50.5 cents during critical periods and 10.72 cents for TOU.
23Indeed, we could imagine a field experiment that would expose customers with these thermostats to

several price schedules; record their thermostat settings about how much they respond to each price level;
and use this to bound a step demand function for each customer. Exploring how customers set their
thermostats to respond to dynamic pricing and how the quantity demanded emerges from the interaction of
set point and temperature has significant value in understanding how putting large numbers of customers
on dynamic pricing changes the investments required to handle a variety of extreme demand scenarios.
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behavior. This family has the form:

D(ρ) = QL if ρ < ρ1

QH if ρ1 ≤ ρ < ρ2

Qc if ρ2 ≤ ρ

Members of this family of functions predict the expected response to a set of rates

r if 0 < ρ1 ≤ minr{ρH,r} and maxr{ρH,r} ≤ ρ2 < minr{ρc}. In other words, ρ1, the price

increase sufficient to cause people to reduce to peak period consumption levels must be

positive, but weakly smaller than the smallest of the peak-period price increases. Similarly,

ρ2, the price increase sufficient to get customers to shift from a peak to a critical conservation

strategy must be larger than any peak period markup, but weakly smaller than any critical

markup.

Such a demand function could come from by a variety of combinations of substitution-

driven, cross-price elasticity, reference-dependent own-price elasticity relative to a reference

point of pu, and conventional own-price elasticity cannot explain. Reference dependent cus-

tomers might conserve power during periods when it is above their reference price – leading

to conservation rather than substitution in patterns that conventional own price elasticity.

Neoclassical own-price elasticity alone would predict that California customers who pay

more offpeak than Gulf Power customers pay during afternoon peaks would use set their

thermostats higher around the clock than their Gulf Power counterparts would on peak.24

The TOU peak deadweight loss rectangle from a step function is the dark purple

region in the lower right corner of figure 4.2 or:

(D(ρH)−D(0))(ρH − ρ1)

The critical price deadweight loss region is the sum of the three shaded rectangles

in figure 4.2. It is the sum of the rectangles formed by the TOU peak and critical responses

to the critical price:
24We do not have sufficient data either to refute this strange implication or to develop a four step function

that would describe behavior consistent with this implication.
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Figure 4.2: This illustrates the family of step function demand curves that consistent with
the rates considered in this essay.
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(D(ρc)−D(ρH))(ρc − ρ2) + (D(ρH)−D(0))(ρc − ρ1)

This step function requires further assumptions or data to calculate the deadweight

loss reduction ratios. However, we show that zero is the lower bound on the step demand

function deadweight loss ratio for any set of rates and report an upper bound in Table 4.1.

The ratio of deadweight losses from peak and critical prices is sensitive to the unobserved

values of ρ1 and ρ2. The ratio is often sensitive to the relative sizes of the responses to peak

and critical prices D(ρc) − D(ρH) and D(ρH) − D(0). Thus, this family thus supports a

range of deadweight loss ratios, α, for rate j ranging from:

(D(ρH)−D(0))(ρH,j −minr{ρH,r}
(D(ρc)−D(ρH))(ρc,j −minr{ρc,r}) + (D(ρH)−D(0))(ρc,j −minr{ρH,r})

≤ α <

(D(ρH)−D(0))(ρH,j − 0)
(D(ρc)−D(ρH))(ρc,j −maxr{ρH,r}) + (D(ρH)−D(0))(ρc,j − 0)

Cases where the customer is indifferent about buying creates two interesting bound-

ing cases:

• One such case implies that this family of step functions includes members that have

zero peak-price-period deadweight loss. There is at least one rate for which the cus-

tomer’s maximum willingness to pay for that power, ρ1, equals the peak price increase,

ρH .25 The PEPCO rate provides further evidence that it is worth considering a lower

bound of 0.

• The directly analogous case where the customer is indifferent between buying D(ρH)

and D(ρc) at the critical price because ρc = ρ2 makes critical period deadweight loss

reduction benefits as small as possible. It provides an upper bound on the ratio of peak

to critical benefits. Graphically, the top left rectangle in figure 4.2 would have zero
25There is an analogous, but far weaker, result which observes that this ratio has an upper bound where

critical and peak kWh reductions have the same deadweight loss reduction value. In other words, this ratio
can achieve an upper bound of NH

Nc
. In practice, deadweight losses will be well below this bound. Peak and

critical prices approach having the same deadweight loss implications in the limit only if all of the peak and
critical prices of the rates under consideration approach being the same. Specifically, this requires that all
the rates we observe have ρc,i arbitrarily close to ρH,i and to ρH,j , ∀j .
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height. The upper bound on the deadweight loss ratios is, conveniently, independent

of the quantity responses to these two price changes and has the functional form:

α ≤ NH(D(ρH)−D(0))(ρH,j − 0)
Nc(D(ρH)−D(0))(ρc,j − 0)

(4.1)

Table 4.1 reports the upper bounds calculated using formula 4.1 to yield the rel-

ative DWL reduction values of a 1 kW reduction during each hour under each rate. The

largest of the upper bounds identified by this calculation happens to come from the rate

with the smallest ρc which means there are step demand functions consistent with the

constraints above with a ρ2 that makes this approximation exact.26

4.4.4 Dealing with Negative Point Estimates of Benefits

The optimization approach taken below attempts to provide the maximum possible

sum of savings. Groups of customers with point estimates that indicate that they generated

negative benefits pose challenges for this method.

i. I chose a set of estimated results that yielded positive point estimates for the benefits

from a larger number of groups than other estimates yielded. The single-difference

estimates that compared the two groups’ outcomes during just the treatment period

yielded more positive point estimates than did the difference-in-difference estimates.

The simplest estimate, regression specification 5, yielded more positive and more

tightly correlated point estimates (and also more tightly correlated estimates) than

did the more complicated estimates 6 and 8.

ii. The next section describes a method of calculating the benefits of enrolling each

customer as a weighted average of its TOU peak and critical benefit point estimates.

For each pair with one negative and one positive benefit point estimate, I round the
26This, in general, need not be the case. To see this, we can take a rate with the smallest critical markup,

ρc and assume that this rate’s TOU peak markup obeys: ρH < 2
3
ρc. (Its TOU peak rate need not be the

lowest of the set seen.) Then choose any ε > 0 such that ρH + 3ε < ρc. We can now construct a rate
with a critical price-difference strictly higher than ρc, namely ρc + ε that outperforms ρc on this metric by

increasing ρH by an amount greater than the ratio
ρH

ρc
. Specifically, choose ρh + 2ε and then notice that:

ρH

ρc
<
ρH + 2ε

ρc + 3ε
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negative benefits to zero before calculating the weighted average.27 This rule affects

the weighted average benefits for the Climate Zone 1 low use and the climate zone 2

very low use group which had negative point estimates of critical period benefits28,

while the climate zone 1 very low use group had negative point estimates of both

benefits. This change simply increased the Climate Zone 1 low use benefits while it

allowed us to include the climate zone 2 very low use group in the optimization that

would have otherwise had to been dropped. This change does not affect the rank

ordering of the benefits and even after rounding negative benefits upward, the two

groups with potentially negative benefits still have very small positive benefits.

iii. I drop the groups that have negative point estimates of total benefits from the optimal

offer calculation. I then assign them to best fitting offer that was chosen to maximize

benefits for all other groups. This means that the optimization problem becomes

easier and eventually trivial as the number of groups (pigeons) shrinks toward the

number of amalgamated categories (pigeonholes).

4.5 The Model of Consumer Choice Underlying this Opti-

mization

The optimization below uses the follow model of consumer choice.

• Customers decide whether to sign up for dynamic pricing or to remain on their exist-

ing, time invariant pricing.

• Customers do not know the details of how their consumption patterns relate to the

consistent offer thresholds, but get a signal from the utility about the fraction, f of

customers in their class will get consistent offers.

• Customers base their decision about whether to sign up, in part, on f the fraction of

customers in their class who get consistent offers.
27Notice that this has some troubling implications. For example, consider two groups of customers with

positive, identical benefit point estimates during TOU peak hours. If one has a negative point estimate of
critical benefits, while the other has a zero point estimate of critical benefits, there is reason to think that the
group with zero benefits is more valuable, but this rounding technique will render them indistinguishable.

28There are far fewer critical days than TOU peak days, so it is likely that critical impacts are less precisely
estimated.
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• Customers vary in the weight they place on the behavioral component of their prefer-

ences – i.e. on how much disutility they expect to experience from a bill surprise and

thus on the likelihood that they will get a consistent offer.29

• Any increase in the probability that a customer gets a consistent offer leads to some

increase in the probability that they sign up30

• Customers have the same sensitivity to changes in the probability that they get a

consistent offer regardless of their climate zone and the offer that they are getting.

It is clear how to do this optimization if we slightly strengthen that assumption

to require that the probability of each person signing up for dynamic pricing is a linear

function of the probability that customers in his category get a consistent offer. In other

words, the assumption that an increase of 1% in the probability that a customer will get a

consistent offer has the same effect on the probability that the customer signs up31, then

it is straightforward to rank offers’ desirability. More formally, model the probability that

a customer in category c given an offer Q signs up as Pc = afc(Q) + b where Pc is the

probability that a customer signs up given fc, the fraction of customers in category c who

got a consistent offer. If we can make these assumptions, then our preference orderings of

offerings will remain the same for any values of a and b that satisfy a > 0, aPc(1.0) + b ≤ 1,

and b ≥ 0 because ∂P sc
∂P cc (Q) = a. If we relax the assumption that ∂P sc

∂P cc (Q) = a where a

29We can operationalize this as a distribution of the η parameter in Koszegi and Rabin’s (2005a) “A
Model of Reference-Dependent Preferences”. I am hopeful that careful choices of the distribution of the
distribution of the η parameter exist that can yield the linear behavior described below for a variety of
well-behaved demand functions. Utility from consuming bundle x while having a reference point r has
two components: U(x|r) = M(x) + ηN(x|r) where M(x) is conventional economic utility from consuming
bundle x and ηN(x|r) is gain-loss utility. It is likely that the formal models would predict a feedback effect
where decreasing the likelihood of losses from a purchase of power would increase their utility directly, by
decreasing their expected losses, and indirectly, by increasing marginal utility which prompts them to buy
more power.

30Having the number of customers accepting the offer increase for all f between 0% and 100% requires
that some customers expect to get so much (dis)utility from other aspects of dynamic pricing that they will
sign up for (decline) dynamic pricing if the probability that they get consistent rebates is 0%(100%). The
number of accepting (declining) customers could hit zero in the limit as f goes to 0 (100%) but would have
to be positive for any ε > 0 (< 100%). If the number of accepting or declining customers were to hit zero
anywhere in the interior of the range from 0 to 100% then the marginal benefit of increasing f would be
zero at that point. Some of the customers who are unaffected by the probability of getting a consistent offer
could be neo-classically economically rational and thus indifferent to the performance of IP rebates’ efforts
to reframe prices.

31This assumption, for mathematical tractibility, ignores Kahneman and Tversky’s well-documented find-
ing that while the difference between a 50% and a 51% chance has expected utility implications identical
to the benefits from going from 99% to 100%, they seem very different. A future revision could incorporate
probability weighting.
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is the same for all customer classes and for all Q, then optimization will become quite

sensitive to the values of a specific to their situations. Relaxing the assumptions would

require the evidence about a from field experiments or market research before performing

the optimization.

4.6 Choosing an optimal, small set of CPP-IPR offers:

Chapter 3 shows that splitting the state into 16 bins and making an offer to each

bin can yield very good CPP-IPR performance. It constructed objective functions for each

group that mapped the number of kWh of rights offered to the number of customers who

got consistent offers. Its analysis shows that we can collapse the 16 group-level offers to 9

categories without making any compromise in the number of customers getting consistent

offers, but that the optimal one-size fits all offer would perform poorly. This section finds

that optimally assigning the 16 groups to 3 categories performs only very slightly worse than

the 16 group (or equivalent 9 category) rate. The optimal one and two offer rates perform

far worse, while adding more categories beyond three adds a small amount of value. Further,

we find that the groups’ objective functions within each optimal category are similar enough

that revising the criteria described in sections 4.3-4.5 is unlikely to have an important impact

on the offers made so long as the goal remains the provision of consistent offers to a large

number of customers in many regions.32

However, the optimization finds that all optimal rates split customers from each

climate zone into at least high and low use-level groups that get different offers. Rates that

make the same offer to every customer in a broad geographic area are attractive in their

administrative simplicity, fair appearance, and clarity to customers. This section, however,

provides strong evidence that making a single offer to broad geographic areas that contain

a diverse housing stock cannot perform well. The SPP sample is too small to test whether

making offers at the ZIP code or neighborhood level could work well.

This section uses the empirical results and assumptions about consumer choice
32The solution is probably less vulnerable to poorly chosen weightings of groups than to weather conditions

that drive up critical period use beyond customers’ levels of rights within a month or that depress use
during low use months. This poses the greatest likelihood of giving inconsistent offers to identifiable groups
of customers whose offers were near an endpoint of the range from the smallest number of rights that we
predict that they need to get consistent rebates to the largest number of rights we predict that they can buy.
If customers’ propensity to exit rises significantly when they get inconsistent offers, knowing which customers
are most likely to get inconsistent offers could facilitate policy responses to extreme weather patterns.
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above to characterize the performance of the optimal 1-5 category groups and two climate-

based categorizations. The formal model implies that customers sign up for CPP in direct

proportion to the probability that it makes them a consistent offer.

Figure 4.3 gives the flavor of the results:

• Making the optimal single statewide offer performs only about 74% as well as does

making the optimal offer to each of the 16 groups of customers.

• Increasing the complexity of offers by defining a second and third category of customers

and making different offers to each category can have significant benefits. Optimally

assigning the 16 groups to 2 (3) categories and then making the optimal offer to each

of those categories performs 91% (96%) as well as does making an optimal offer to

each of the 16 groups.

• The marginal benefits of adding more categories are much smaller. Adding fourth and

fifth categories increases performance to 98 and 99% of the 16 group optima. Chapter

3 showed that 9 a category offer could make consistent offers to every customer who

would get one under the 16 group optima. If the costs of adding more categories are

low, adding them is worthwhile. But the modest benefits of adding fourth and fifth

categories only justify modest outlays to do so.

• Requiring that the offer make a single offer to every customer in each climate zone

significantly reduces performance. Making an optimal offer to customers in “hot

climates” (zones 3 and 4) and an optimal offer to customers in “cool climates” (zones

1 and 2) performs 78% as well as does making 16 optimal offers. Further dividing

these categories to make an optimal offer to each climate zone increases performance

by less than a percentage point. The tables in section 4.6.2 show that this approach

performs poorly because the optimal one-size-per-climate zone offers work well for the

customers in the middle of the size distribution, but perform poorly for both high and

low use customers.

4.6.1 Categories Bring Together Groups with Similar Objective Func-

tions

Figures 4.4, 4.5, and 4.6 show the group level objective functions grouped using the

optimal 3 category offer. Each group’s objective function is the percentage of customers in
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Figure 4.3: The performance of the optimally chosen 1 to 5 category offers, plus the per-
formance of the optimal hot and cold climate zone offers and the optimal offer to each of
the four climate zones. Customer heterogeneity within and across climate zones turns out
to be quite important. Hence, there are large performance benefits from 1) making at least
three categories and 2) allowing similarly located, large and small consumers to get different
offers.
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each group who would have gotten a consistent offer under the group-level optimal offer who

got consistent offers at each level of in kWh per event rights for each group. The vertical

lines show the optimal offer for each category. The optimization attempted to choose the

categorization and offer (vertical line) that maximizes the weighted sum of the group-level

objective functions.

Figures 4.5 and 4.6 make it particularly clear that the optimal categories contain

groups with objective functions with similar, overlapping optima. Category 1 in figure 4.4

appears slightly more diverse.33 There is a broad harmony of objectives within homogeneous

categories like these since delivering the maximum level of benefits for one group’s objective

function or weighted sum of group objective functions will generally perform quite well for

the groups with similar objective functions.

Testing the sensitivity of the optimal offer to changes in the metric used to measure

the value of each customer shows the implications of the combination of similar objective

functions and the chosen estimate’s very high correlation between critical and peak period

benefits.34 The optima presented in this section use a metric that puts 2.2 times as much

importance on the kW response to the TOU peak price as it puts on response to the critical

price. Changing to a metric that uses a TOU:critical ratio of 6.7 does not change the

optimal 2, 3, and 5 category offers. The optimal, four-category offer changed from one that

achieved 97.7% of the 16 category offer’s performance to one that achieved 97.4% of its

performance according to the 2.2 ratio metric.

4.6.2 The Optimal, Group-Level Performance of a Variety of Categoriza-

tions

This section presents the performance of the each of the optimized offers for each

group. Its tables report 1) the category to which the optimization assigns each of the 16

groups and 2) this categorical offer’s benefits as a percentage of the benefits that the group

would deliver if we made 16 optimal, group-level, offers.35 The optimization uses group-level
33Bootstrapping the set of customers would let us test the hypothesis that the optima or regions near the

optima are statistically indistinguishable.
34The high correlation between the two kinds of impacts could be sufficient to drive the insensitivity

findings here. Eyeballing the objective functions suggests that the similarity among objective functions may
also be sufficient to get this result. Future robustness tests can check whether the similarity of objective
functions is sufficient to preserve these findings when we use other impact estimates, that happen to be
much less correlated.

35The algorithm always assigns zone 4, very high use customers to category 1. Otherwise, the category
numbering is arbitrary.
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Figure 4.4: The objective step functions for the groups in category 1.
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Figure 4.5: The objective step functions for the groups in category 3.
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Figure 4.6: The objective step functions for the groups in category 3.
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average benefits per customer in its benefits calculations. This means that the group-level

percentage of potential benefits delivered is identical to the percentage of people in the

group getting consistent offers.36 The overall results reported in Figure 4.3 are a weighted

average of the group level benefits.

The one and two category offers forced the algorithm to choose which groups

of customers would get good offers. The algorithm’s choices reflect the fact that groups

in hotter climates and groups with higher use were more valuable because those groups

responded more to price incentives.

• The optimal 1 category rate makes consistent offers to a large majority of the high

and very-high use category customers. It performs quite poorly (probably bundling

rights with too many kWh per month) for very low use customers – fewer than 20%

of whom get consistent offers in any climate zone. Low use customers in zones 1 and

2 also fare poorly. Similar patterns are apparent in the optimal one-offer-per-climate

zone results.

• The preferential allocation of flexibility to high use, hot climate customers is also

evident in the 2 category offer. This offer’s low use category serves 10 groups, while

its high use category serves just 6 groups. All of the groups in the high use category

make consistent offers to at least 89% of their customers. The lower use category

provides consistent offers to at least 84% of members of each low and high use group,

but to as few as 34% of customers in the very low use category.

• These stark differences largely disappear in the 3, 4, and 5 category offers. There is

enough flexibility, enough similarity among low use groups, and enough response value

in some low-use groups to justify deployments of offers that make consistent offers to

more than 80% of all customers for whom the 16 optimal group level offers would be

consistent.
36The graphs calculate the “percentage of people” by using weights that map each data point in the

sample to the number of customers it represents. This process puts different weights on single family and
apartment customers in each of the 16 cells.
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Optimal 1 category offer

size class zone 1 zone 2 zone 3 zone 4 offer

very low
0.0% 2.4% 19.9% 11.0% Category 1

Cat. 1 Cat. 1 Cat. 1 Cat. 1 19.0 kWh/event

low
13.9% 54.7% 94.1% 89.1%

Cat. 1 Cat. 1 Cat. 1 Cat. 1

high
84.1% 97.5% 85.3% 88.8%

Cat. 1 Cat. 1 Cat. 1 Cat. 1

very high
100.0% 86.8% 81.1% 69.7%

Cat. 1 Cat. 1 Cat. 1 Cat. 1

Optimal 2 category offer

size class zone 1 zone 2 zone 3 zone 4 offer

very low
34.0% 68.4% 73.2% 74.3% Category 2

Cat. 2 Cat. 2 Cat. 2 Cat. 2 9.75 kWh/event

low
100.0% 98.0% 84.9% 86.8% Category 1

Cat. 2 Cat. 2 Cat. 2 Cat. 2 25.75 kWh/event

high
100.0% 87.5% 97.1% 89.2%

Cat. 2 Cat. 2 Cat. 1 Cat. 1

very high
91.3% 100.0% 94.6% 100.0%

Cat. 1 Cat. 1 Cat. 1 Cat. 1

Optimal 3 category offer

size class zone 1 zone 2 zone 3 zone 4 offer

very low
84.0% 88.0% 99.5% 100.0% Category 3

Cat. 3 Cat. 3 Cat. 3 Cat. 3 6.5 kWh/event

low
92.6% 88.6% 100.0% 100.0% Category 2

Cat. 3 Cat. 3 Cat. 2 Cat. 2 14.25 kWh/event

high
100.0% 92.5% 97.1% 89.2% Category 1

Cat. 2 Cat. 2 Cat. 1 Cat. 1 25.75 kWh/event

very high
91.3% 100.0% 94.6% 100.0%

Cat. 1 Cat. 1 Cat. 1 Cat. 1
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Optimal 4 category offer

size class zone 1 zone 2 zone 3 zone 4 offer

very low
84.0% 88.0% 99.5% 100.0% Category 4

Cat. 3 Cat. 3 Cat. 3 Cat. 3 27.75 kWh/event

low
92.6% 88.6% 100.0% 100.0% Category 3

Cat. 3 Cat. 3 Cat. 2 Cat. 2 6.5 kWh/event

high
100.0% 92.5% 94.2% 100.0% Category 2

Cat. 2 Cat. 2 Cat. 1 Cat. 1 14.25 kWh/event

very high
100.0% 100.0% 100.0% 100.0% Category 1

Cat. 1 Cat. 4 Cat. 4 Cat. 1 24.0 kWh/event

Optimal 5 category offer

size class zone 1 zone 2 zone 3 zone 4 offer

very low
84.0% 92.8% 100.0% 100.0% Category 5

Cat. 4 Cat. 4 Cat. 4 Cat. 4 10.25 kWh/event

low
100.0% 100.0% 100.0% 100.0% Category 4

Cat. 5 Cat. 5 Cat. 3 Cat. 3 6.25 kWh/event

high
100.0% 92.5% 94.2% 100.0% Category 3

Cat. 3 Cat. 3 Cat. 2 Cat. 2 14.25 kWh/event

very high
100.0% 100.0% 100.0% 100.0% Category 2

Cat. 2 Cat. 1 Cat. 1 Cat. 1 24.0 kWh/event

Category 1

27.75 kWh/event

One offer for climate zones 1-2 and one for zones 3-4

size class zone 1 zone 2 zone 3 zone 4 offer

very low
9.0% 23.9% 17.4% 10.1% Category 2

Cat. 1 Cat. 1 Cat. 2 Cat. 2 20.25 kWh/event

low
79.6% 92.5% 88.7% 89.1% Category 1

Cat. 1 Cat. 1 Cat. 2 Cat. 2 13.75 kWh/event

high
100.0% 90.0% 88.3% 92.5%

Cat. 1 Cat. 1 Cat. 2 Cat. 2

very high
91.3% 78.9% 83.8% 74.8%

Cat. 1 Cat. 1 Cat. 2 Cat. 2
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One offer per climate zone

size class zone 1 zone 2 zone 3 zone 4 offer

very low
25.0% 23.9% 19.9% 4.6% Category 4

Cat. 1 Cat. 2 Cat. 3 Cat. 4 22.25 kWh/event

low
100.0% 92.5% 94.1% 89.1% Category 3

Cat. 1 Cat. 2 Cat. 3 Cat. 4 19.0 kWh/event

high
100.0% 90.0% 85.3% 96.3% Category 2

Cat. 1 Cat. 2 Cat. 3 Cat. 4 13.75 kWh/event

very high
91.3% 78.9% 81.1% 84.9% Category 1

Cat. 1 Cat. 2 Cat. 3 Cat. 4 11.5 kWh/event

4.6.3 Performance Relative to Total Number of Feasible Customers in

the Group

The performance figures above describe performance as a percentage of what mak-

ing 16 group level offers would achieve. Their denominators omit the customers who did not

get consistent offers under the optimal group-level offer. Table 4.7.1 shows the performance

of the optimal 3 category offer as a percentage of the total number of customers for whom

a consistent offer exists. This is the product of the percentages reported above and the

percentage of customers for whom the optimal group-level offer is consistent, given that a

consistent offer exists for the customer.

There are four reasons why a customer might not get a consistent offer:

i. No budget balanced, consistent offers exist: it is impossible to make a consistent

offer to a handful of customers given the constraints and criteria in Chapter 3. It goes

on to report that budget balanced, consistent offers exist for 97% of all customers

(Chapter 3). Making consistent offers to the remaining customers requires either

seasonally adjusting the number of kWh that rights come bundled with or abandoning

a desirable property of the offers. Even an ideal, omniscient system using the current

ground rules would be unable to make consistent offers to these customers, so I do

not count them in the current analysis that aims to evaluate performance relative to

that ideal.

ii. Compromise across groups: Getting from 16 offers to 3 offers requires making

some outlying customers in outlying groups offers that are not quite consistent.



www.manaraa.com

166

iii. Compromise within groups: Making just 16 offers to 500 customers means that

some outlying customers within each group may get offers that are not quite consistent.

iv. Inability to predict the right offer: Some customers are outliers in the relationship

between the consistent offer range, climate zone, and previous summer usage. The

budget balance constraints are close to binding for others, leaving them with a very

narrow range of consistent offers. If such a customer is larger or smaller than the

typical customer in their group, they might not get a consistent offer.

Table 6 in Chapter 3reports the percentage of customers in each group for whom

the optimal group level offer is consistent.37

Table 4.7.1 is generally hopeful. The group-level offers, however, did not fit per-

fectly in the hotter climate zones and that making category level offers fits slightly worse.

Half of all categories make consistent offers to more than 80% of the customers for whom a

consistent offer exists. The other offers make consistent offers to more than two thirds of the

feasible customers. Chapter 3found that inconsistent offers often deviated from consistency

by well under 1% of total annual electricity bils.

4.6.4 Categorizing Customers by Usage Level Alone

The findings above suggest that a household’s energy consumption level alone

might be a good predictor of the appropriate offer, while the household’s climate alone

cannot. Table 4.6.4 suggests that the 2 and 3 category optimal assignments offers reported

elsewhere appear to be consistent with assignment by energy use alone. There is, however,

reason to think that customers who use air conditioning to deal with hot climates use more

of their power during hot afternoons than do customers with identical average daily use

levels in cooler climates. Indeed, the four and five category offers make assignments that

average daily usage alone would not predict. A modest revision of the algorithm used here

could find the optimal statewide categorizations by average 2002 summer daily usage. An

optimal categorization by previous summer usage could outperform the sixteen category

optimization if benefits from increased consumption-level resolution outweighed the loss of
37These calculations should be identical to multiplying the values in the tables above with the number

of customers getting consistent offers from optimal group level offers in Chapter 3, Table 6. The present
analysis and Chapter 3, Table 6 weight customers slightly differently and thus yield slightly different answers.
Figures 4.4-4.6 use the same weighting as Chapter 3Table 6. A future revision will fix this discrepancy.
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upper bounds on previous summer average kWh/day that define cells
size class zone 1 zone 2 zone 3 zone 4
very low 8.5 10.7 14.0 16.0
low 16.0 19.0 24.0 28.0
high 22.7 24.0 32.0 36.4

Table 4.2: Upper bounds on usage levels that define cells.

climate zone distinctions.38,39

Categorizing customers by consumption alone would be modestly simpler than the

current approach. It would create unified, state wide category assignment criteria rather

than climate zone specific criteria. But unified statewide consumption-level categories lack

the compelling advantages of climate zone-level offers. Customers can manipulate their

consumption levels. Consumption levels do not designate an obvious category for new

buildings or new accounts, will not always treat neighbors alike, and do not guarantee that

an account will be in the same offer category from year to year. IP rebate implementations

will have to address these modest problems regardless of whether they use consumption

alone or in combination with other criteria.

4.6.5 Policy Implications of Inconsistent Offers

It is important that policy makers have an accurate appraisal of likely performance

and that they do market research to see how customers react to inconsistent offers given

that realistic offers will expose a non-trivial minority of customers to inconsistent offers.40

Careful implementation could reduce damage from inconsistent offers. Creating

a modest reserve fund early in the program’s fiscal year (or early in the lifetime of an

account) could reduce the number of bill surprises by covering the shortfalls that make

offers inconsistent. Chapter 3finds that most offer inconsistencies are small. Thus, there

may be opportunities to design bills that emphasize important things like opportunities to
38Insofar as implementation concerns rule out the possibility of using finer grained distinctions, pointing

out their potential benefits of more precise division points is not particularly constructive or interesting.
39California’s increasing block rates already apply usage-level tiers to categorize customers’ monthly con-

sumption. Tiers vary geographically. It might be reasonable to assign customers to offer categories using
the existing tier system. Further analysis could explore the effectiveness of a variety of functions that map
each customer’s customer monthly usage tier time series to an offer category.

40All of the optimization in this project assumes that correcting for undercontribution disturbs customers
exactly as much as exposure to high prices on the margin. A more nuanced understanding of customer
preferences from market research might suggest adjustments to the optimization.
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reduce bills by conserving during high priced periods, while playing down the deviations

from the normal sources of charges.

Appendix M presents these results for other categories.

4.7 These Optimization Challenges Compared to Other Dy-

namic Rates

4.7.1 Optimization requirements of a variety of rate designs

An IP rebate implementation in California would probably use customer energy

consumption or a proxy for it to assign customers to categories. It would have to be

comfortable with some customers getting offers that are not quite consistent. This finding

places IP rebate rates’ implementation challenges between critical peak and real time pricing

and baseline rebate rates. Real time pricing requires no customer-specific optimization, but

is often so complex and exposes customers to enough bill-spikes that customers find it

unattractive. CPP’s challenges are similar but CPP would benefit from optimization to

develop a rate that approximates spot energy prices well.

Conventional CPP and real time pricing rates offer implementers a paucity of tools

to address customers’ decision making heuristics like reference-dependent loss aversion.41

Both IP rebates and baseline-rebate rates offer potentially important tools to reframe high

prices as gains, but require some tailoring of offers to meet customer characteristics. CPP

with IP rebates adds an additional layer of customer-class specific optimization challenges to

deliver consistent offers. The offers affect how well the rate attracts customers and how likely

it is to work as promised for those customers. Deviations from optimal behavior do not affect

incentives or revenue streams. Baseline-rebate rates pose analogous optimization problems

that affect incentives and revenue streams. IP rebate rates can solve these problems at the

customer category level, while baseline-rebate rates almost always customize offers for each

customer.

Baseline-rebate rates have been repeatedly deployed, but they struggle with an

optimization problem that is analogous to the IP rebate optimization, but is both fun-

damentally harder and involves higher stakes. Table 4.7.1 compares the IP rebate and
41CPP designers might explore whether customers have loss averse reactions to high, evening rates. A

conventional CPP rate could end its TOU peak price period early in the evening to address this loss aversion.
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avoid offering too few rights because avoid offering too many rights be-
cause

IP rebate expose customers to high marginal
prices

customer may be unable to buy all
offered rights

baseline-rebate breaks marginal incentive to save means that the customer gets an
automatic bill reduction payed for
through a cross subsidy from other
customers or a rate increase

Table 4.3: Comparing the optimization problems posed by baseline-rebate and IP rebate
rates.

baseline-rebate optimization problems. Both baseline rebate and IP rebate rates seek to

offer each customer a level of rights that is neither too small nor too big. The ideal baseline

rights level would be the customers’ use level in the counterfactual in which the were on

conventional, time-invariant pricing. A smaller baseline would give customers too weak an

incentive to conserve power. Baselines above this counterfactual level pay customers “struc-

tural rebates” for not using power that the customers were never would have used. Other

customers often end up cross subsidizing customers who get structural rebates. The cus-

tomer’s counterfactual usage is unobserved. Analysis of billing time series data shows that

factors like weather fluctuations and the installation of new appliances cause fluctuations in

counterfactual use. Chapter 3describes how trying to use customers’ own behavior to cal-

culate a baseline can create perverse incentives and is an example of a class of asymmetric

information games that have no first-best solutions.

While the optimal baseline-rebate offer is the exact counterfactual, the IP rebate

optimum offer is generally any choice from a broad range of analogous, consistent offers.42

The existence of a broad range of consistent offers makes the optimization easier than those

that baseline rebate rates pose, but the analysis here finds that even the simplified problem

poses some significant challenges. Further, the IP rebate stakes are lower because, unlike

a poor choice of baseline, IP rebate offer inconsistency does not affect firm revenues, total

annual bills, or incentives. A significant number of baseline-rebate programs have been

deployed despite the difficult and more important optimization problems they face. IP

rebates appear to provide practitioners with attractive, practical tools to help customers who
42Chapter 3does some analysis that observes that the most desirable offers are not only consistent under

the most likely scenario, but are also robust to a variety of foreseeable deviations from that scenario. So a
more accurate statement is that IP rebates create a range of offers that will be optimal with high probability.
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Optimal 3 category offer
size class zone 1 zone 2 zone 3 zone 4
very low 67.2% 71.0% 77.5% 79.0%
low 92.6% 88.6% 76.5% 76.5%
high 100.0% 90.2% 76.8% 86.0%
very high 91.3% 97.4% 89.7% 79.8%

use decision making heuristics like reference-dependent loss aversion make good decisions

about participating in dynamic pricing.

4.8 Conclusion

The IP Rebate optimization problem has characteristics that facilitate its imple-

mentation.

• Assigning all customers statewide to three or more categories can perform very well.

Optimally aggregating 16 groups of customers into three categories performs nearly

as well as making each of the 16 groups an optimal offer.

• Utilities already have the geographic and billing data to develop these categories.

• The group level objective functions that report the number of customers who would

get consistent offers at each level of offers are fairly similar within each of the three

optimal categories. This means that there is likely to be broad agreement about the

optimal offers among interest groups that have divergent priorities for the program

and divergent attitudes about whether to target groups of customers.

• Most of the group-level objective functions have large, fairly flat regions around the

optima.43 Thus, implementers have flexibility to address implementation concerns

like offering rights in round numbers of kWh or having the offers correspond to usage

thresholds in existing rates.

• These performance statistics come from the majority of the state of California which

has diverse climates, housing stock, and socio-economic conditions. Many utilities,
43The significant change from the three category offer to the two category offer only leads to a 6 percentage

point change in overall performance. This suggests that the category-level objective functions have fairly
flat peaks as well.
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including two of the three that participated in the California SPP, have far more

homogeneous customer bases than does California as a whole.44

IP Rebate deployments cannot, however, be as simple as we might like. Achieving

high performance appears to require at least three categories that divide customers by usage

or a proxy for usage. Every IP rebate offer provides the right incentives and the right total

annual bills. Even the best offers that have no seasonal variation in contributions, however,

expose a minority of customers to offers that include high marginal payments or corrections

for under purchasing of rights.

Thus, answers to hard questions about the implications of inconsistent offers would

be useful. There is little evidence about whether customers who get inconsistent offers will

exit. It is unclear under what circumstances customers might prefer complex provisions

that make offers more likely to be consistent to exposure to inconsistent offers. These are

crucial open questions. We can hope that even customers who get occasional, modestly

inconsistent offers will exhibit the fairly low customer attrition rates seen in conventional

dynamic pricing programs. If, however, customers who get inconsistent offers tend to exit

even when they are coming out ahead under dynamic pricing, it is worth investigating the

effectiveness of bills that draw attention to information about total costs and consequences

rather than offer inconsistencies.

IP rebates rates, unlike conventional CPP and real time pricing, have features that

address customer loss aversion that require some offer customization. IP rebates pose an

offer customization problem that is both easier and far less important than the optimization

problem that baseline-rebate rates pose. The IP rebate design means that every customer

faces the incentives and pays the total annual bill that the rate designers intended. Between

67% and 100% of customers in each category will get rates with features designed to address

loss aversion that work in a desirable way. Thus, IP rebates offer every customer the right

incentives and a large majority of customers reframing of high prices as opportunities that

works as intended.

44Only PG&E has customers in climate zone 1. SDG&E has neither a fog belt nor a desert region.



www.manaraa.com

172

Chapter 5

Conclusion

Demand for air conditioning on the hottest summer weekday afternoons drives

extreme electricity demand in many electricity markets. Meeting this extreme demand is

very expensive. It is especially expensive to deal with when it coincides with problems in the

electricity supply system that exacerbate the scarcity. Dynamic pricing has been proposed

as a way to manage these costs.

These essays fill in important aspects of the picture of the implications of opt-in,

residential critical peak pricing (CPP), and the challenge of making such a program work

well. Taken together, they have several important policy implications that cut across the

chapters:

5.0.1 Customer Heterogeneity is Important

• It is propitious, but perhaps unsurprising, that dynamic pricing has its greatest ben-

efits on hot weekday afternoons for customers in climates hot enough to justify air

conditioning. It estimates that the benefits of dynamic pricing range from zero in

cooler climates on cooler days to .3 (.4) kW every hour for ordinary afternoon TOU

peak (extreme scarcity, “critical peak”) prices on the hottest days in hot climates.

The notion of a typical customer on a typical day turns out to be fairly unhelpful in

a place with climates and buildings as diverse as California.

• Using at least three different rate makes consistent offers to far more customers than

does a one-size-fits-all approach. Making the optimal single statewide offer performs

only about 74% as well as does making the optimal offer to each of the 16 groups
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of customers. Optimally assigning the 16 groups to 3 categories and then making

the optimal offer to each of those categories performs 96% as well as does making an

optimal offer to each of the 16 groups. In this context, heterogeneity within climate

zones appears more important than heterogeneity between similarly-sized customers

across climate zones. Making an optimal offer to each climate zone performs 78% as

well as does making 16 optimal offers.

5.0.2 Recruiting and Retaining the Right Customers is a Significant Chal-

lenge

• A variety of customer decision making heuristics could drive resistance to signing up

for dynamic pricing. There is reason to think that these heuristics cause a significant

number of customers to decline to participate despite the fact that they would be

happy and save money on the program. Incentive preserving rebates are an approach

to work around these heuristics that has desirable economic properties. At least in

this case, rates can incorporate desirable microeconomic incentives and be presented

in a way that works around troubling heuristics.

• Neoclassical explanations for resistance are also important. The customers who are

most able to respond are also often the customers who would have to give up the

greatest cross subsidies to participate. A rate that is revenue neutral for the statewide

average load profile, who used an average of 22.3% of their summer-season power

during peak hours, would increase bills for more than 55% (45%) of treatment-group

customers in climate zone 4 (3) even after they shifted their usage patterns in response

to the new prices. Developing a rate that charges revenue-neutral prices within each

climate zone, however, would reduce this problem and leave only between 25% and

40% (40% and 45%) of treatment group customers coming out behind despite shifting

load in zone 3 (in zone 4).

• In the longer term, there is evidence that customers who experienced bill increases or

who were frustrated with critical events left the program. Thus, retaining customers

appears to be a separate challenge from attracting customers, although retaining

customers appears to be an easier challenge.

There are significant open questions here:
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• This dissertation shows that it is possible to design incentive preserving rebates that

have desirable economic properties, while addressing decision making heuristics that

could be driving customer resistance to signing up for CPP. This dissertation presents

significant evidence from the literature, from focus groups, and from field experience

that suggests that these heuristics may be driving resistance, but does not directly ex-

plore customers’ thought processes to confirm the origin of resistance. Future research

should explore whether incentive preserving rebates are an effective way to help cus-

tomers make better choices. In particular, additional evidence would be useful about

how people react to efforts that address loss aversion with a more complex reframing.

• The SPP generated a data set about customer decisions whether to continue on dy-

namic pricing. Differences between customers on high and low ratio rates and dif-

ferences in bill spikes might allow future analysis to explore the behavioral and neo-

classical economic explanations of attrition. It could also explore the demographic

correlates of attrition and whether the program was keeping its most responsive cus-

tomers.

5.0.3 Targeting may offer compelling benefits, but is not required

Pricing programs will be judged, at least in large part, by their ability to reduce

peak period demand, especially during scarcity periods. Some customers respond far more

than others – and thus provide far more social benefit. This project suggests that carefully

designed programs can address inter-regional cross subsidies by designing rates that are

revenue neutral for the average consumption profile within each region. Simple menus of IP

rebate offers can perform well for large and small customers in a variety of climates. Indeed,

we get good performance for low benefit customers even when the algorithm is tuned to

maximize the expected total kWh response, which puts roughly 50 times more weight per

customer on making a consistent offer to the most responsive kind of customer than to

the least. Thus, deploying 3 or more offers that use customer-consumption levels do not

appear to require selecting which customers would get offers that are consistent. A scheme

of climate-specific offers can maintain cross subsidies. By contrast, a one-size-fits-all offer, a

two statewide offer, or a one offer per climate zone offer all force designers to choose which

customers will get inconsistent offers.

While targeting may be optional, addressing heterogeneity is not. A one-size-fits-
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all approach that makes a single dynamic pricing offer in a place with climates and air

conditioning adoption rates as diverse as those in California will struggle with the fact that

the most responsive customers will have to give up cross subsidies to participate and, if

it uses IP rebates, is likely to make many customers inconsistent offers. Many utilities

have much less diverse customer bases than does the state of California as a whole and

may find that they can achieve high performance with a single rate. Thus, policies that

understand customer diversity and, as appropriate, address differences among customers

are quite important.

It is up to the policy designers to decide whether to take this one step further

to target the most responsive customers with extra marketing and consumer education

activities, IP rebate offers that are more likely to be consistent, or even incentives to try

dynamic pricing or rates that increase the percentage of customers from highly responsive

categories who would save money if they exhibited at least modest response.

Factors that might lead to mixed views of the wisdom of targeting include:

• Equity which suggests that all customers should be treated the same. This may

suggest against targeting, but also urges policy makers to get prices as close to cost

as possible to stop subsidizing people who habitually run big air conditioners during

scarcity periods.

• Planning for growth. Limiting an initial deployment to a small category of customers

or concentrating its resources too narrowly may leave the program without evidence

that it can work for other kinds of customers. Viewing initial deployments as steps

in a transition toward improving pricing for most consumers suggest both including

customers who represent the set of consumers as a whole, and using techniques like

targeting to ensure that early programs deliver significant social benefits.

• There are deadweight losses from exposing any price-elastic customer to prices that

diverge from marginal cost, so improving prices for any customer should offer social

benefits. The research here, suggests, however that some customers deliver far more

social benefits than others.

One crucial open question here is to approximate the set of Pareto-improving deals.

Such an exercise would let us understand how much surplus putting each type of customer

on dynamic pricing creates, so we could decide how to allocate those benefits among the
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responsive-customer, the utility, and other customers. If putting a certain class of customers

on dynamic pricing saved $50 per year in the fixed cost of building and maintaining peaking

capacity beyond the marginal costs incorporated into their rates, we could imagine a rate

that “targets” these customers with an offer of $40 to sign up and still leaves $10 in benefits

to split between other customers and the utility.1

Another crucial unknown is the cost and effectiveness of recruiting. If fixed-cost

efforts like designing and testing marketing materials are central in determining effectiveness

and if there is little need to customize for different regions and types of customers, then there

is relatively little reason to target. If recruiting has large marginal costs, then targeting a

scarce recruiting budget at the most responsive customers makes sense. This might happen

if the firm faced high costs to contact customers, to offer them incentives to participate, to

install new meters, and to answer new customers’ questions. If it were feasible, it might be

particularly compelling for the regulator to offer the firm a reasonably good set of incentives

and give the utility latitude to set and allocate marketing and sign-up incentive budgets, as

well as to incrementally refine some aspects of the program and its marketing materials.2

5.0.4 Utilities have enough information to make offers and predict re-

sponse. Good Offers Require Some but Limited Flexibility

Climate zone and a customer’s overall energy consumption level are powerful pre-

dictors of the appropriate offer for a customer. These factors plus the temperature on a

particular day are powerful predictors of customers’ response. Utilities know where their

customers live and have billing time series data for all but the newest accounts and buildings.

A menu of offers that makes small, medium, and large offers and differentiates

among customers by historical use and geography can perform quite well.

Incentive preserving rebates have the potential to be part of a carefully designed

residential opt-in dynamic pricing program that delivers significant benefits and that paves

the way for future expansion of dynamic pricing.

1Before we rush to the conclusion that we can increase participation rates with modest amounts of cash
to sign up, it is worth noting that the statewide pricing pilot used exactly this kind of scheme. Market
researchers talked to customers who refused to sign up and discovered that many suspicious customers were
ready to interpret any increase in the cash payment as being compensation for a larger expected bill increase.

2Getting incentives right in this arena is a difficult, important question that is well beyond the scope of
this dissertation.
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Appendix A

Customer Recruitment Process

Figure A.1: The recruiting process that generated the control and CPP groups.
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Appendix B

Graphs of the relationship between

average daily electricity use the

summer before the experiment and

peak use during the pretreatment

and treatment periods
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Figure B.1: This graph shows raw average daily use plotted against raw average daily afternoon use
before and after the experiment began. This illustrates the identification strategy for the relationship
between customer historical usage level and customer use during weekday peak hours. The simple,
graphical results are not nearly as striking as those that in figures 2.4, 2.3, and 2.2 which support
the regression finding that dynamic pricing has greater impact on hotter days.
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Appendix C

Means of the whole sample for

comparison to other papers

The selection problems described in section 2.2.4 extend to other slices of the data,

including those used in the previous papers that use the same data set like Faruqui and

George (2005); Charles River Associates (c); Herter et al. (2007); Herter (2006b,a) and

Chapter 3. I illustrate this point by reporting the sample averages for every customer who

reports any data and every customer who has at least 105 days of participation in the

experiment. A substantial number of customers completed the survey, but have no detailed

electricity use data. Some subjects who did participate in the experiment never completed

the survey. This problem is more serious among control customers. It is especially serious

among control customers who use a fairly small amount of power.
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whole sample >4 months of usage data

Control CPP P- Control CPP P-

Gp. Gp. value Gp. Gp. value

number of customers with at

least one of these variables

778 1,146 331 355

avg. daily use, kWh, summer

2002

22.6 21.8 0.420 22.9 21.5 0.230

avg. use, kWh, weekdays 2-

7PM, June 1-15 ’03

5.89 5.25 0.083 6.02 5.1 0.015

avg. daily use offpeak usage,

kWh, June 1-15 ’03

13.7 13.6 0.933 13.8 13.5 0.673

avg. 4PM temperature, June

1-15 ’03

77.3 77.3 0.967 77.4 77.2 0.756
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whole sample >4 months of usage data

Control CPP P- Control CPP P-

Gp. Gp. value Gp. Gp. value

# children 0 to 5 .387 .299 0.078 .396 .311 0.148

# children 6-18 .702 .701 0.984 .714 .695 0.829

# people over 65 .298 .301 0.950 .292 .323 0.559

everyone in household is > 65 .094 .109 0.460 .093 .117 0.333

home built after 1979 .44 .479 0.244 .455 .442 0.753

% work from home part/full

time

.164 .172 0.752 .187 .132 0.061

agrees w/ ”everyone should

pay a little ...[for] a cleaner en-

vironment”

.525 .649 0.000 .504 .666 0.000

agrees that ”a cleaner envi-

ronment will mean fewer jobs”

.2 .231 0.269 .224 .241 0.638

agree/strongly agree that

’global warming is a threat...’

.668 .664 0.910 .66 .634 0.513

1=rates utility performance

good or excellent

.781 .786 0.857 .76 .797 0.261

household head is a college

graduate

.439 .468 0.370 .433 .434 0.991

has central air conditioning .517 .531 0.673 .544 .519 0.544

has 1+ room air conditioners .139 .164 0.321 .143 .152 0.766

electric well pump .059 .054 0.749 .056 .041 0.376

# refrigerators + freezers 1.45 1.45 0.946 1.46 1.46 0.958

electric hot water .127 .125 0.937 .107 .11 0.925

electric range .383 .375 0.818 .376 .317 0.118

electric oven .483 .504 0.572 .467 .445 0.611

electric dryer .378 .416 0.237 .377 .362 0.692

programmable thermostat for

Central AC

.246 .292 0.115 .272 .286 0.710

swimming pool .133 .14 0.768 .142 .121 0.451

electric spa .066 .071 0.773 .075 .086 0.644
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whole sample >4 months of usage data

Control CPP P- Control CPP P-

Gp. Gp. value Gp. Gp. value

number of customers con-

tacted before one accepted

2.33 4.14 0.000 1.19 3.16 0.000

total annual household in-

come

69977 65464 0.112m 70852 62400 0.026m

sq. feet of living space 1652.4 1658.4 0.891m 1681.3 1621.6 0.371m

significance: *=10% ** =5% ***=1%
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Appendix D

CPP Impacts: Complete regression

results

Dependent variable: consumption on non holiday weekdays in kW (kWh/h). Neg-

ative values indicate that dynamic pricing customers used less power than comparable

control customers.
Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

TOU Peak Price in Effect
0.067 -0.107 -0.100 0.268

( 0.077 ) ( 0.139 ) ( 0.136 ) ( 0.197 )

TOU peak price in effect * day before

critical price

0.001 0.001 0.003 0.001

( 0.012 ) ( 0.013 ) ( 0.013 ) ( 0.013 )

TOU peak price in effect * day after

critical price

0.024∗ 0.030∗∗ 0.030∗∗ 0.017

( 0.013 ) ( 0.014 ) ( 0.014 ) ( 0.014 )

TOU Peak Price in Effect * electric

use, kWh / day, summer 2002

-0.004 -0.006 -0.005 0.005

( 0.004 ) ( 0.005 ) ( 0.005 ) ( 0.005 )

TOU Peak Price in Effect * high ratio

rate customer.

-0.011 -0.015 -0.010 0.018

( 0.039 ) ( 0.043 ) ( 0.044 ) ( 0.054 )

TOU Peak Price in Effect * apartment
-0.050 0.010 -0.002 -0.013
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.062 ) ( 0.087 ) ( 0.087 ) ( 0.104 )

TOU Peak Price in Effect * climate

zone 2

-0.027 -0.060 -0.065 -0.042

( 0.051 ) ( 0.062 ) ( 0.060 ) ( 0.074 )

TOU Peak Price in Effect * climate

zone 3

-0.063 -0.065 -0.070 -0.084

( 0.072 ) ( 0.092 ) ( 0.093 ) ( 0.110 )

TOU Peak Price in Effect * climate

zone 4

-0.228∗ -0.174 -0.138 -0.096

( 0.131 ) ( 0.154 ) ( 0.149 ) ( 0.176 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm

0.010∗∗∗ 0.009∗∗ 0.006 0.009∗∗

( 0.003 ) ( 0.004 ) ( 0.006 ) ( 0.004 )

TOU Peak Price in Effect * cooling

degree hours squared (1000’s), 2-7pm

-0.102∗∗∗ -0.078∗∗ -0.013 -0.106∗∗∗

( 0.033 ) ( 0.035 ) ( 0.135 ) ( 0.038 )

TOU Peak Price in Effect * heating

degree hours 2-7pm

-0.00010 -0.000049 -0.00035 -0.007

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.006 )

TOU Peak Price in Effect * heating

degree hours 2-7pm squared (1000’s)

. . . 0.141

. . . ( 0.123 )

TOU Peak Price in Effect * central AC
. -0.033 -0.014 -0.031

. ( 0.079 ) ( 0.081 ) ( 0.086 )

TOU Peak Price in Effect * room AC
. 0.110 0.118 -0.086

. ( 0.084 ) ( 0.085 ) ( 0.107 )

TOU Peak Price in Effect * number of

bedrooms

. 0.059 0.050 0.043

. ( 0.041 ) ( 0.039 ) ( 0.043 )

TOU Peak Price in Effect * # people

in the household

. 0.010 0.010 0.049

. ( 0.022 ) ( 0.022 ) ( 0.038 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm * central AC

. . -0.000022 .

. . ( 0.002 ) .

TOU Peak Price in Effect * cooling

degree hours squared * central AC

. . -0.00044 .
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . ( 0.00084 ) .

TOU Peak Price in Effect * cooling

degree hours 2-7PM, previous day

. . . -0.001∗

. . . ( 0.00059 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, two days before

. . . -0.0000072

. . . ( 0.00045 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, three days before

. . . -0.001∗∗

. . . ( 0.00045 )

TOU Peak Price in Effect * work from

home 11-30 hrs/wk

. . . 0.055

. . . ( 0.106 )

TOU Peak Price in Effect * work from

home >30 hrs/wk

. . . -0.319

. . . ( 0.267 )

TOU Peak Price in Effect * swimming

pool

. . . -0.279∗

. . . ( 0.148 )

TOU Peak Price in Effect * spa
. . . 0.062

. . . ( 0.139 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm * room AC

. . . 0.010∗∗∗

. . . ( 0.003 )

TOU Peak Price in Effect * heating

degree hours 2-7PM * electric heat

. . . 0.010∗∗∗

. . . ( 0.003 )

TOU Peak Price in Effect * electric

heat

. . . -0.161∗

. . . ( 0.095 )

TOU Peak Price in Effect * # kids

under 5 in household

. . . -0.106

. . . ( 0.072 )

TOU Peak Price in Effect * # kids over

5 in household

. . . -0.054

. . . ( 0.052 )

TOU Peak Price in Effect * # people

over 65 in household

. . . -0.117∗∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.057 )

TOU Peak Price in Effect * work from

home 0-10 hrs/wk

. . . -0.026

. . . ( 0.125 )

TOU Peak Price in Effect * electric

cooktop

. . . 0.184

. . . ( 0.145 )

TOU Peak Price in Effect * electric

oven

. . . -0.139

. . . ( 0.140 )

TOU Peak Price in Effect * number of

refrigerators and freezers

. . . -0.121

. . . ( 0.085 )

TOU Peak Price in Effect * customer

stayed in expt. < 4.5 months

. . . -0.079

. . . ( 0.126 )

TOU Peak Price in Effect * customer

stayed in expt. throughout expt.

. . . -0.193∗∗

. . . ( 0.089 )

Critical Price in Effect
0.141 0.024 -0.024 0.497∗∗

( 0.097 ) ( 0.182 ) ( 0.176 ) ( 0.251 )

Critical Price in Effect * day before

critical price

0.081∗∗∗ 0.081∗∗∗ 0.064∗∗ 0.047

( 0.025 ) ( 0.027 ) ( 0.027 ) ( 0.033 )

Critical Price in Effect * day after

critical price

0.052∗∗ 0.055∗∗ 0.037 0.009

( 0.025 ) ( 0.028 ) ( 0.028 ) ( 0.032 )

Critical Price in Effect * electric use,

kWh / day, summer 2002

-0.018∗∗∗ -0.020∗∗∗ -0.019∗∗∗ -0.010

( 0.005 ) ( 0.006 ) ( 0.006 ) ( 0.007 )

Critical Price in Effect * high ratio rate

customer.

0.217 0.256∗ 0.236 0.143

( 0.138 ) ( 0.153 ) ( 0.146 ) ( 0.108 )

Critical Price in Effect * apartment
-0.011 0.017 0.028 -0.034

( 0.090 ) ( 0.123 ) ( 0.122 ) ( 0.147 )

Critical Price in Effect * climate zone 2
0.003 -0.040 -0.052 -0.058
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.064 ) ( 0.075 ) ( 0.072 ) ( 0.099 )

Critical Price in Effect * climate zone 3
-0.074 -0.010 -0.005 -0.032

( 0.110 ) ( 0.133 ) ( 0.136 ) ( 0.156 )

Critical Price in Effect * climate zone 4
-0.171 -0.062 -0.023 0.019

( 0.169 ) ( 0.197 ) ( 0.191 ) ( 0.217 )

Critical Price in Effect * cooling degree

hours 2-7pm

0.010∗∗∗ 0.007∗ 0.007 0.009∗∗

( 0.004 ) ( 0.004 ) ( 0.007 ) ( 0.005 )

Critical Price in Effect * cooling degree

hours squared (1000’s), 2-7pm

-0.110∗∗∗ -0.065 -0.074 -0.107∗∗

( 0.038 ) ( 0.041 ) ( 0.161 ) ( 0.044 )

Critical Price in Effect * heating degree

hours 2-7pm

0.007 0.003 0.00042 -0.029∗

( 0.008 ) ( 0.010 ) ( 0.008 ) ( 0.015 )

Critical Price in Effect * central AC
. -0.218∗ -0.143 -0.219∗

. ( 0.114 ) ( 0.123 ) ( 0.129 )

Critical Price in Effect * room AC
. 0.296∗∗ 0.287∗∗ -0.114

. ( 0.124 ) ( 0.132 ) ( 0.162 )

Critical Price in Effect * number of

bedrooms

. 0.033 0.031 0.025

. ( 0.059 ) ( 0.058 ) ( 0.059 )

Critical Price in Effect * # people in

the household

. 0.030 0.035 0.080∗

. ( 0.027 ) ( 0.027 ) ( 0.048 )

Critical Price in Effect * cooling degree

hours 2-7pm * central AC

. . 0.000017 .

. . ( 0.003 ) .

Critical Price in Effect * 2-7pm squared

* central AC

. . 0.0000065 .

. . ( 0.00093 ) .

Critical Price in Effect * heating degree

hours 2-7pm squared (1000’s)

. . . 1.194∗∗

. . . ( 0.592 )

Critical Price in Effect * cooling degree

hours 2-7PM, previous day

. . . -0.002∗∗



www.manaraa.com

198

Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.001 )

Critical Price in Effect * cooling degree

hours 2-7PM, two days before

. . . 0.002

. . . ( 0.001 )

Critical Price in Effect * cooling degree

hours 2-7PM, three days before

. . . -0.002

. . . ( 0.001 )

Critical Price in Effect * work from

home 11-30 hrs/wk

. . . 0.018

. . . ( 0.187 )

Critical Price in Effect * work from

home >30 hrs/wk

. . . -0.243

. . . ( 0.291 )

Critical Price in Effect * swimming

pool

. . . -0.289

. . . ( 0.196 )

Critical Price in Effect * spa
. . . 0.124

. . . ( 0.193 )

Critical Price in Effect * cooling degree

hours 2-7pm * room AC

. . . 0.010∗∗∗

. . . ( 0.003 )

Critical Price in Effect * heating degree

hours 2-7PM* electric heat

. . . 0.042∗∗

. . . ( 0.021 )

Critical Price in Effect * electric heat
. . . -0.178

. . . ( 0.140 )

Critical Price in Effect * # kids under

5 in household

. . . -0.221∗∗

. . . ( 0.093 )

Critical Price in Effect * # kids over 5

in household

. . . -0.051

. . . ( 0.068 )

Critical Price in Effect * # people over

65 in household

. . . -0.223∗∗∗

. . . ( 0.085 )

Critical Price in Effect * work from

home 0-10 hrs/wk

. . . 0.001
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.176 )

Critical Price in Effect * electric

cooktop

. . . 0.377∗

. . . ( 0.195 )

Critical Price in Effect * electric oven
. . . -0.249

. . . ( 0.185 )

Critical Price in Effect * number of

refrigerators and freezers

. . . -0.245∗∗

. . . ( 0.106 )

Critical Price in Effect * customer

stayed in expt. < 4.5 months

. . . 0.161

. . . ( 0.164 )

Critical Price in Effect * customer

stayed in expt. throughout expt.

. . . -0.352∗∗

. . . ( 0.138 )

Treatment Customer
-0.062 0.220 0.118 .

( 0.077 ) ( 0.160 ) ( 0.154 ) .

Treatment Customer * electric use,

kWh / day, summer 2002

0.000034 0.002 0.001 .

( 0.004 ) ( 0.005 ) ( 0.005 ) .

Treatment Customer * apartment
0.102∗ -0.022 0.017 .

( 0.058 ) ( 0.092 ) ( 0.089 ) .

Treatment Customer * climate zone 2
0.027 -0.013 -0.023 .

( 0.056 ) ( 0.072 ) ( 0.068 ) .

Treatment Customer * climate zone 3
0.061 0.021 0.045 .

( 0.074 ) ( 0.095 ) ( 0.093 ) .

Treatment Customer * climate zone 4
0.271∗ 0.248 0.237 .

( 0.156 ) ( 0.173 ) ( 0.163 ) .

Treatment Customer * cooling degree

hours 2-7pm

-0.013∗∗∗ -0.010∗∗ -0.007 -0.012∗∗

( 0.004 ) ( 0.004 ) ( 0.005 ) ( 0.005 )

Treatment Customer * cooling degree

hours squared (1000’s), 2-7pm

0.098∗∗∗ 0.062 0.027 0.096∗∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.037 ) ( 0.039 ) ( 0.121 ) ( 0.041 )

Treatment Customer * heating degree

hours 2-7pm

-0.00018 0.000074 -0.00030 0.004

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.005 )

Treatment Customer * central AC
. -0.042 -0.026 .

. ( 0.074 ) ( 0.075 ) .

Treatment Customer * room AC
. 0.099 0.098 .

. ( 0.083 ) ( 0.081 ) .

Treatment Customer * number of

bedrooms

. -0.104∗∗ -0.080∗ .

. ( 0.044 ) ( 0.042 ) .

Treatment Customer * # people in the

household

. 0.013 0.020 .

. ( 0.021 ) ( 0.021 ) .

Treatment Customer * cooling degree

hours 2-7pm * central AC

. . -0.003 .

. . ( 0.003 ) .

Treatment Customer * cooling degree

hours 2-7pm squared * central AC

. . 0.00029 .

. . ( 0.00076 ) .

Treatment Customer * heating degree

hours 2-7pm squared (1000’s)

. . . -0.160

. . . ( 0.125 )

Treatment Period (after 7/1/2003)
-0.035 0.036 0.020 -0.267∗

( 0.054 ) ( 0.109 ) ( 0.105 ) ( 0.145 )

Treatment Period * electric use, kWh /

day, summer 2002

0.007∗∗ 0.006 0.005 -0.00040

( 0.003 ) ( 0.004 ) ( 0.004 ) ( 0.004 )

Treatment Period * apartment
0.037 0.008 0.013 0.026

( 0.041 ) ( 0.061 ) ( 0.062 ) ( 0.070 )

Treatment Period * climate zone 2
-0.013 -0.016 0.006 0.00013

( 0.040 ) ( 0.046 ) ( 0.045 ) ( 0.059 )

Treatment Period * climate zone 3
0.035 -0.013 0.004 -0.015
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.055 ) ( 0.069 ) ( 0.069 ) ( 0.079 )

Treatment Period * climate zone 4
0.055 -0.045 -0.021 -0.120

( 0.097 ) ( 0.111 ) ( 0.106 ) ( 0.142 )

Treatment Period * cooling degree

hours 2-7pm

-0.003 -0.002 0.005 -0.004

( 0.003 ) ( 0.003 ) ( 0.004 ) ( 0.004 )

Treatment Period * cooling degree

hours squared (1000’s), 2-7pm

0.025 0.019 -0.155∗ 0.018

( 0.029 ) ( 0.031 ) ( 0.094 ) ( 0.032 )

Treatment Period * heating degree

hours 2-7pm

-0.003 -0.002 -0.001 0.010

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.006 )

Treatment Period * central AC
. 0.138∗∗ 0.075 0.144∗∗

. ( 0.060 ) ( 0.063 ) ( 0.067 )

Treatment Period * room AC
. -0.052 -0.046 0.021

. ( 0.060 ) ( 0.060 ) ( 0.090 )

Treatment Period * number of

bedrooms

. -0.027 -0.025 -0.031

. ( 0.031 ) ( 0.029 ) ( 0.033 )

Treatment Period * # people in the

household

. 0.00042 0.003 -0.019

. ( 0.018 ) ( 0.018 ) ( 0.028 )

Treatment Period * cooling degree

hours 2-7pm * central AC

. . -0.001 .

. . ( 0.002 ) .

Treatment Period * cooling degree

hours 2-7pm squared * central AC

. . 0.001∗∗ .

. . ( 0.00057 ) .

Treatment Period * heating degree

hours 2-7pm squared (1000’s)

. . . -0.062

. . . ( 0.156 )

Treatment Period * cooling degree

hours 2-7PM, previous day

. . . 0.003∗∗∗

. . . ( 0.00046 )

Treatment Period * cooling degree

hours 2-7PM, two days before

. . . 0.00095∗∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.00040 )

Treatment Period * cooling degree

hours 2-7PM, three days before

. . . 0.00100∗∗∗

. . . ( 0.00034 )

Treatment Period * work from home

11-30 hrs/wk

. . . -0.020

. . . ( 0.080 )

Treatment Period * work from home

>30 hrs/wk

. . . 0.085

. . . ( 0.213 )

Treatment Period * swimming pool
. . . 0.251∗∗

. . . ( 0.118 )

Treatment Period * spa
. . . -0.058

. . . ( 0.107 )

Treatment Period * cooling degree

hours 2-7pm * room AC

. . . -0.008∗∗∗

. . . ( 0.002 )

Treatment Period * heating degree

hours 2-7PM* electric heat

. . . -0.007∗∗∗

. . . ( 0.002 )

Treatment Period * electric heat
. . . 0.151∗∗

. . . ( 0.072 )

Treatment Period * # kids under 5 in

household

. . . 0.106∗

. . . ( 0.055 )

Treatment Period * # kids over 5 in

household

. . . 0.062∗

. . . ( 0.033 )

Treatment Period * # people over 65 in

household

. . . 0.155∗∗∗

. . . ( 0.047 )

Treatment Period * work from home

0-10 hrs/wk

. . . 0.169∗

. . . ( 0.089 )

Treatment Period * electric cooktop
. . . -0.130
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.118 )

Treatment Period * electric oven
. . . -0.003

. . . ( 0.108 )

Treatment Period * number of

refrigerators and freezers

. . . 0.011

. . . ( 0.064 )

Treatment Period * customer stayed in

expt. < 4.5 months

. . . 0.062

. . . ( 0.101 )

Treatment Period * customer stayed in

expt. throughout expt.

. . . 0.184∗∗∗

. . . ( 0.072 )

Critical Period
-0.250∗∗∗ -0.314∗∗∗ -0.253∗∗∗ -0.187

( 0.043 ) ( 0.085 ) ( 0.079 ) ( 0.130 )

Critical Period * electric use, kWh /

day, summer 2002

0.017∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.017∗∗∗

( 0.002 ) ( 0.003 ) ( 0.003 ) ( 0.003 )

Critical Period * high ratio rate

customer.

-0.209∗ -0.226∗ -0.201 -0.063

( 0.121 ) ( 0.133 ) ( 0.125 ) ( 0.071 )

Critical Period * apartment
-0.004 0.045 0.022 0.042

( 0.041 ) ( 0.062 ) ( 0.058 ) ( 0.080 )

Critical Period * climate zone 2
0.042 -0.005 0.00040 0.042

( 0.030 ) ( 0.032 ) ( 0.030 ) ( 0.049 )

Critical Period * climate zone 3
0.217∗∗∗ 0.100 0.070 0.084

( 0.054 ) ( 0.064 ) ( 0.066 ) ( 0.075 )

Critical Period * climate zone 4
0.183∗∗ 0.046 -0.00070 -0.011

( 0.084 ) ( 0.087 ) ( 0.085 ) ( 0.106 )

Critical Period * cooling degree hours

2-7pm

-0.003∗ -0.002 0.002 -0.004∗∗∗

( 0.001 ) ( 0.001 ) ( 0.003 ) ( 0.001 )

Critical Period * cooling degree hours

squared (1000’s), 2-7pm

-0.009 -0.017 -0.020 0.004
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.012 ) ( 0.013 ) ( 0.055 ) ( 0.013 )

Critical Period * heating degree hours

2-7pm

-0.004 -0.007 -0.005 0.013

( 0.005 ) ( 0.008 ) ( 0.005 ) ( 0.011 )

Critical Period * central AC
. 0.267∗∗∗ 0.114∗∗ 0.274∗∗∗

. ( 0.052 ) ( 0.057 ) ( 0.060 )

Critical Period * room AC
. -0.069 -0.062 0.072

. ( 0.062 ) ( 0.069 ) ( 0.093 )

Critical Period * number of bedrooms
. 0.026 0.020 0.007

. ( 0.024 ) ( 0.024 ) ( 0.031 )

Critical Period * # people in the

household

. -0.010 -0.011 -0.003

. ( 0.012 ) ( 0.012 ) ( 0.019 )

Critical Period * cooling degree hours

2-7pm * central AC

. . -0.002∗∗ .

. . ( 0.00093 ) .

Critical Period * cooling degree hours

2-7pm squared * central AC

. . -0.000073 .

. . ( 0.00031 ) .

Critical Period * heating degree hours

2-7pm squared (1000’s)

. . . -0.697

. . . ( 0.442 )

Critical Period * cooling degree hours

2-7PM, previous day

. . . -0.001

. . . ( 0.001 )

Critical Period * cooling degree hours

2-7PM, two days before

. . . -0.00079

. . . ( 0.001 )

Critical Period * cooling degree hours

2-7PM, three days before

. . . 0.002∗

. . . ( 0.001 )

Critical Period * work from home 11-30

hrs/wk

. . . 0.083

. . . ( 0.113 )

Critical Period * work from home >30

hrs/wk

. . . 0.049
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.136 )

Critical Period * swimming pool
. . . -0.009

. . . ( 0.093 )

Critical Period * spa
. . . -0.081

. . . ( 0.080 )

Critical Period * cooling degree hours

2-7pm * room AC

. . . 0.00018

. . . ( 0.001 )

Critical Period * heating degree hours

2-7PM* electric heat

. . . 0.005

. . . ( 0.009 )

Critical Period * electric heat
. . . -0.065

. . . ( 0.071 )

Critical Period * # kids under 5 in

household

. . . 0.027

. . . ( 0.048 )

Critical Period * # kids over 5 in

household

. . . -0.021

. . . ( 0.028 )

Critical Period * # people over 65 in

household

. . . 0.106∗∗

. . . ( 0.049 )

Critical Period * work from home 0-10

hrs/wk

. . . -0.004

. . . ( 0.071 )

Critical Period * electric cooktop
. . . -0.147∗

. . . ( 0.081 )

Critical Period * electric oven
. . . 0.091

. . . ( 0.072 )

Critical Period * number of

refrigerators and freezers

. . . 0.017

. . . ( 0.045 )

Critical Period * customer stayed in

expt. < 4.5 months

. . . -0.329∗∗∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.110 )

Critical Period * customer stayed in

expt. throughout expt.

. . . 0.161∗∗

. . . ( 0.069 )

. .

electric use, kWh / day, summer 2002
0.047∗∗∗ 0.046∗∗∗ 0.045∗∗∗ .

( 0.003 ) ( 0.004 ) ( 0.004 ) .

trt. customer on high-ratio rate
-0.024 0.006 0.007 .

( 0.036 ) ( 0.039 ) ( 0.038 ) .

apartment
-0.054 0.056 0.006 .

( 0.044 ) ( 0.081 ) ( 0.078 ) .

climate zone 2
0.013 0.002 0.039 .

( 0.042 ) ( 0.059 ) ( 0.056 ) .

climate zone 3
0.020 -0.004 0.032 .

( 0.057 ) ( 0.078 ) ( 0.076 ) .

climate zone 4
-0.207 -0.239∗ -0.238∗ .

( 0.129 ) ( 0.137 ) ( 0.131 ) .

cooling degree hours 2-7PM, base 78
0.017∗∗∗ 0.017∗∗∗ 0.008∗ 0.019∗∗∗

( 0.004 ) ( 0.004 ) ( 0.005 ) ( 0.005 )

heating degree hours squared (1000’s),

2-7pm

-0.054 -0.033 . .

( 0.035 ) ( 0.038 ) . .

cooling degree hours squared (1000’s),

2-7pm

-0.054 -0.033 0.009 -0.040

( 0.035 ) ( 0.038 ) ( 0.094 ) ( 0.040 )

heating degree hours squared (1000’s),

2-7pm

-0.173 -0.204 -0.131 0.108

( 0.063 ) ( 0.076 ) ( 0.066 ) ( 0.107 )

heating degree hours 2-7pm
0.009∗∗∗ 0.010∗∗ 0.006∗ -0.003

( 0.003 ) ( 0.004 ) ( 0.003 ) ( 0.005 )
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

Tuesday
-0.007 -0.005 -0.004 -0.003

( 0.006 ) ( 0.007 ) ( 0.007 ) ( 0.009 )

Wednesday
-0.006 -0.005 -0.005 -0.004

( 0.006 ) ( 0.007 ) ( 0.007 ) ( 0.008 )

Thursday
-0.019∗∗ -0.017∗ -0.015 -0.008

( 0.008 ) ( 0.010 ) ( 0.009 ) ( 0.010 )

Friday
-0.003 0.00030 -0.00056 0.002

( 0.008 ) ( 0.010 ) ( 0.010 ) ( 0.010 )

year 2004
-0.029 -0.027 -0.021 0.008

( 0.023 ) ( 0.026 ) ( 0.027 ) ( 0.032 )

June
0.071∗∗∗ 0.076∗∗∗ 0.065∗∗∗ 0.042∗∗∗

( 0.013 ) ( 0.014 ) ( 0.014 ) ( 0.016 )

July
0.130∗∗∗ 0.151∗∗∗ 0.126∗∗∗ 0.112∗∗∗

( 0.019 ) ( 0.021 ) ( 0.021 ) ( 0.022 )

August
0.157∗∗∗ 0.177∗∗∗ 0.148∗∗∗ 0.131∗∗∗

( 0.021 ) ( 0.024 ) ( 0.024 ) ( 0.026 )

September
0.101∗∗∗ 0.113∗∗∗ 0.096∗∗∗ 0.078∗∗∗

( 0.017 ) ( 0.019 ) ( 0.019 ) ( 0.022 )

October
0.040 0.050∗ 0.045 0.042

( 0.024 ) ( 0.028 ) ( 0.028 ) ( 0.032 )

heating degree hours 2-7pm squared

(1000’s)

-0.173∗∗∗ -0.204∗∗∗ -0.131∗∗ .

( 0.063 ) ( 0.076 ) ( 0.066 ) .

Tue * cooling degree hours 2-7pm
-0.00073 -0.00062 -0.00094 -0.001

( 0.00061 ) ( 0.00064 ) ( 0.00060 ) ( 0.00069 )

Tue * cooling degree hours 2-7pm

squared (1000’s)

0.00076 -0.002 0.002 0.003

( 0.007 ) ( 0.007 ) ( 0.006 ) ( 0.007 )
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

Tue * heating degree hours 2-7pm
-0.001 -0.002 -0.001 -0.001

( 0.001 ) ( 0.002 ) ( 0.001 ) ( 0.001 )

Tue * heating degree hours 2-7pm

squared (1000’s)

0.044∗ 0.048 0.038 0.023

( 0.027 ) ( 0.029 ) ( 0.025 ) ( 0.023 )

Wed * cooling degree hours 2-7pm
-0.002∗∗ -0.001 -0.002∗∗ -0.002∗∗

( 0.00069 ) ( 0.00074 ) ( 0.00072 ) ( 0.00082 )

Wed * cooling degree hours 2-7pm

squared (1000’s)

0.015∗∗ 0.011 0.016∗∗ 0.012

( 0.007 ) ( 0.008 ) ( 0.007 ) ( 0.008 )

Wed * heating degree hours 2-7pm
0.001 0.00078 0.001 0.001

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

Wed * heating degree hours 2-7pm

squared (1000’s)

0.009 0.010 -0.001 -0.015

( 0.030 ) ( 0.034 ) ( 0.031 ) ( 0.032 )

Thu * cooling degree hours 2-7pm
-0.00091 -0.00077 -0.002∗∗ -0.001

( 0.00071 ) ( 0.00079 ) ( 0.00073 ) ( 0.00073 )

Thu * cooling degree hours 2-7pm

squared (1000’s)

0.005 0.004 0.012 0.006

( 0.007 ) ( 0.008 ) ( 0.008 ) ( 0.008 )

Thu * heating degree hours 2-7pm
-0.002 -0.003 -0.002 -0.002

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

Thu * heating degree hours 2-7pm

squared (1000’s)

0.082∗ 0.091∗ 0.072 0.049

( 0.045 ) ( 0.052 ) ( 0.044 ) ( 0.034 )

Fri * cooling degree hours 2-7pm
-0.002∗∗∗ -0.002∗∗ -0.003∗∗∗ -0.00086

( 0.00072 ) ( 0.00082 ) ( 0.00088 ) ( 0.00090 )

Fri * cooling degree hours 2-7pm

squared (1000’s)

0.012∗ 0.011 0.023∗∗ 0.004

( 0.007 ) ( 0.008 ) ( 0.010 ) ( 0.009 )

Fri * heating degree hours 2-7pm
-0.005∗∗∗ -0.006∗∗∗ -0.005∗∗ -0.005∗∗

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

Fri * heating degree hours 2-7pm

squared (1000’s)

0.108∗∗∗ 0.128∗∗∗ 0.104∗∗∗ 0.084∗∗

( 0.035 ) ( 0.044 ) ( 0.037 ) ( 0.033 )

year 2004 * cooling degree hours 2-7pm -0.004∗∗ -0.004∗∗ -0.005∗∗∗ -0.003∗

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

year 2004 * cooling degree hours 2-7pm

squared (1000’s)

0.037∗∗ 0.037∗∗ 0.043∗∗ 0.033∗

( 0.016 ) ( 0.018 ) ( 0.018 ) ( 0.018 )

year 2004 * heating degree hours 2-7pm 0.002 0.002 0.002 0.003

( 0.002 ) ( 0.003 ) ( 0.003 ) ( 0.005 )

year 2004 * heating degree hours 2-7pm

squared (1000’s)

0.029 0.032 -0.003 -0.129

( 0.054 ) ( 0.064 ) ( 0.060 ) ( 0.133 )

June * cooling degree hours 2-7pm
-0.002 -0.003 -0.003 0.002

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

June * cooling degree hours 2-7pm

squared (1000’s)

0.026 0.037 0.027 -0.010

( 0.028 ) ( 0.028 ) ( 0.025 ) ( 0.023 )

June * heating degree hours 2-7pm
-0.005∗∗ -0.005∗∗ -0.004∗ -0.002

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

June * heating degree hours 2-7pm

squared (1000’s)

0.069∗∗ 0.079∗∗ 0.069∗ 0.062

( 0.031 ) ( 0.036 ) ( 0.035 ) ( 0.039 )

July * cooling degree hours 2-7pm
-0.00049 -0.002 0.00010 -0.00038

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

July * cooling degree hours 2-7pm

squared (1000’s)

0.017 0.023 -0.002 0.012

( 0.021 ) ( 0.022 ) ( 0.020 ) ( 0.023 )

July * heating degree hours 2-7pm
-0.015∗∗∗ -0.016∗∗∗ -0.013∗∗∗ -0.013∗∗∗

( 0.004 ) ( 0.004 ) ( 0.004 ) ( 0.003 )

July * heating degree hours 2-7pm

squared (1000’s)

0.398∗∗∗ 0.351∗∗∗ 0.309∗∗∗ 0.285∗∗∗

( 0.122 ) ( 0.126 ) ( 0.120 ) ( 0.094 )
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

Aug * cooling degree hours 2-7pm
-0.002 -0.003 -0.001 -0.00099

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

Aug * cooling degree hours 2-7pm

squared (1000’s)

0.027 0.034 0.010 0.012

( 0.020 ) ( 0.021 ) ( 0.019 ) ( 0.021 )

Aug * heating degree hours 2-7pm
-0.035∗∗∗ -0.037∗∗∗ -0.030∗∗∗ -0.018∗∗

( 0.010 ) ( 0.011 ) ( 0.009 ) ( 0.007 )

Aug * heating degree hours 2-7pm

squared (1000’s)

1.038∗∗ 1.064∗∗ 0.898∗∗ 0.438

( 0.420 ) ( 0.444 ) ( 0.388 ) ( 0.280 )

Sept * cooling degree hours 2-7pm
-0.006∗∗∗ -0.007∗∗∗ -0.005∗∗∗ -0.005∗∗

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

Sept * cooling degree hours 2-7pm

squared (1000’s)

0.053∗∗∗ 0.058∗∗∗ 0.034∗ 0.036∗

( 0.017 ) ( 0.018 ) ( 0.018 ) ( 0.019 )

Sept * heating degree hours 2-7pm
-0.004∗∗ -0.005∗ -0.003 -0.002

( 0.002 ) ( 0.003 ) ( 0.003 ) ( 0.002 )

Sept * heating degree hours 2-7pm

squared (1000’s)

0.056∗ 0.067∗ 0.044 0.032

( 0.031 ) ( 0.040 ) ( 0.035 ) ( 0.028 )

Oct * cooling degree hours 2-7pm
-0.014∗∗∗ -0.015∗∗∗ -0.015∗∗∗ -0.010∗∗∗

( 0.002 ) ( 0.002 ) ( 0.003 ) ( 0.002 )

Oct * cooling degree hours 2-7pm

squared (1000’s)

0.109∗∗∗ 0.115∗∗∗ 0.111∗∗∗ 0.056∗∗

( 0.025 ) ( 0.027 ) ( 0.029 ) ( 0.027 )

Oct * heating degree hours 2-7pm
-0.00019 -0.00099 0.001 0.002

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.005 )

Oct * heating degree hours 2-7pm

squared (1000’s)

0.063 0.070 0.020 -0.106

( 0.052 ) ( 0.062 ) ( 0.058 ) ( 0.131 )

constant
-0.150∗∗∗ -0.434∗∗∗ -0.309∗∗ 0.627∗∗∗

( 0.057 ) ( 0.142 ) ( 0.137 ) ( 0.030 )
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

central AC
. 0.082 -0.063 .

. ( 0.056 ) ( 0.058 ) .

room AC
. -0.036 -0.026 .

. ( 0.066 ) ( 0.065 ) .

number of bedrooms
. 0.072∗∗ 0.053 .

. ( 0.035 ) ( 0.033 ) .

# people in the household
. 0.014 0.012 .

. ( 0.017 ) ( 0.017 ) .

cooling degree hours 2-7pm * central

AC

. . 0.013∗∗∗ .

. . ( 0.002 ) .

cooling degree hours 2-7pm squared *

central AC

. . -0.00048 .

. . ( 0.00055 ) .

one * cooling degree hours 2-7pm

squared (1000’s)

. . 0.009 -0.041

. . ( 0.094 ) ( 0.040 )

heating degree hours 2-7pm squared,

1000’s

. . . 0.108

. . . ( 0.108 )

N 121408 101981 101981 77660

R-squared 0.4915 0.5020 0.5196 0.6380

Robust standard errors, clustered by customer in parentheses.

Significance: *=10% ** =5% ***=1%

Cooling degree hours are base 78o F. Heating degree hours are base 65o F.
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Appendix E

CPP Impacts in Just Climates

with Hot Summers and Lots of

Central Air Conditioning

California has regions with hot summers and air conditioning in the majority of

residences. The SPP designated these areas as climate zones 3 (Central Valley) and 4

(Desert)). California also has more temperate coastal regions. Zones 3 and 4 are more

comparable to conditions in much of the rest of the United States and in California regions

like Sacramento and Imperial County where there are large, public utilities. Hence, this

table reproduces the SPP’s impacts for just climate zones 3 and 4. Qualitatively, the main

results are quite similar to and often slightly stronger than those found above.

Dependent variable: consumption on non holiday weekdays in kW (kWh/h). Neg-

ative values indicate that dynamic pricing customers used less power than comparable

control customers.
Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

TOU Peak Price in Effect
0.027 -0.228 -0.281 0.422
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.128 ) ( 0.267 ) ( 0.265 ) ( 0.437 )

TOU peak price in effect * day before

critical price

0.025 0.027 0.028 0.017

( 0.024 ) ( 0.026 ) ( 0.026 ) ( 0.023 )

TOU peak price in effect * day after

critical price

0.046∗ 0.057∗∗ 0.057∗∗ 0.043∗

( 0.027 ) ( 0.029 ) ( 0.028 ) ( 0.024 )

TOU Peak Price in Effect * electric

use, kWh / day , summer 2002

-0.002 -0.002 -0.00057 0.013∗

( 0.005 ) ( 0.007 ) ( 0.007 ) ( 0.008 )

TOU Peak Price in Effect * high ratio

rate customer.

-0.040 -0.016 -0.003 0.007

( 0.078 ) ( 0.089 ) ( 0.088 ) ( 0.082 )

TOU Peak Price in Effect * apartment
-0.004 0.081 0.055 0.095

( 0.129 ) ( 0.178 ) ( 0.177 ) ( 0.200 )

TOU Peak Price in Effect * climate

zone 4

-0.193 -0.162 -0.119 -0.009

( 0.162 ) ( 0.172 ) ( 0.169 ) ( 0.169 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm

0.010∗∗ 0.009∗∗ 0.009 0.009∗∗

( 0.004 ) ( 0.004 ) ( 0.007 ) ( 0.004 )

TOU Pk Price in Effect * cooling degree

hours squared (1000’s), 2-7pm

-0.108∗∗∗ -0.089∗∗ -0.096 -0.109∗∗∗

( 0.038 ) ( 0.039 ) ( 0.160 ) ( 0.039 )

TOU Peak Price in Effect * heating

degree hours 2-7pm

-0.020∗ -0.025∗∗ -0.023∗∗ 0.010

( 0.010 ) ( 0.012 ) ( 0.012 ) ( 0.021 )

TOU Peak Price in Effect * central AC
. -0.106 -0.065 -0.242

. ( 0.122 ) ( 0.125 ) ( 0.149 )

TOU Peak Price in Effect * room AC
. 0.127 0.152 -0.333

. ( 0.159 ) ( 0.159 ) ( 0.235 )

TOU Peak Price in Effect * number of

bedrooms

. 0.071 0.066 0.074

. ( 0.078 ) ( 0.075 ) ( 0.090 )

TOU Peak Price in Effect * # people

in the household

. 0.023 0.023 0.068
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. ( 0.040 ) ( 0.040 ) ( 0.091 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm * central AC

. . -0.00086 .

. . ( 0.003 ) .

TOU Peak Price in Effect * cooling degree

hours 2-7pm squared * central AC

. . 0.000048 .

. . ( 0.00096 ) .

TOU Peak Price in Effect * heating

degree hours 2-7pm squared (1000’s)

. . . -0.237

. . . ( 1.241 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, previous day

. . . -0.001∗

. . . ( 0.00072 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, two days before

. . . -0.00011

. . . ( 0.00064 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, three days before

. . . -0.001∗∗

. . . ( 0.00062 )

TOU Peak Price in Effect * work from

home 11-30 hrs/wk

. . . 0.283

. . . ( 0.338 )

TOU Peak Price in Effect * work from

home >30 hrs/wk

. . . -0.234

. . . ( 0.492 )

TOU Peak Price in Effect * swimming

pool

. . . 0.081

. . . ( 0.217 )

TOU Peak Price in Effect * spa
. . . -0.407

. . . ( 0.247 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm * room AC

. . . 0.009∗∗

. . . ( 0.004 )

TOU Peak Price in Effect * heating

degree hours 2-7PM* electric heat

. . . 0.009∗

. . . ( 0.006 )

TOU Peak Price in Effect * electric

heat

. . . -0.085
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.168 )

TOU Peak Price in Effect * # kids

under 5 in household

. . . -0.117

. . . ( 0.139 )

TOU Peak Price in Effect * # kids over

5 in household

. . . -0.138

. . . ( 0.124 )

TOU Peak Price in Effect * # people

over 65 in household

. . . -0.176

. . . ( 0.124 )

TOU Peak Price in Effect * work from

home 0-10 hrs/wk

. . . -0.027

. . . ( 0.239 )

TOU Peak Price in Effect * electric

cooktop

. . . 0.030

. . . ( 0.281 )

TOU Peak Price in Effect * electric

oven

. . . -0.076

. . . ( 0.267 )

TOU Peak Price in Effect * number of

refrigerators and freezers

. . . -0.190

. . . ( 0.131 )

TOU Peak Price in Effect * customer

stayed in expt. < 4.5 months

. . . 0.029

. . . ( 0.327 )

TOU Peak Price in Effect * customer

stayed in expt. throughout expt.

. . . -0.507∗∗

. . . ( 0.216 )

Critical Price in Effect
0.076 -0.133 -0.302 0.865

( 0.206 ) ( 0.370 ) ( 0.390 ) ( 0.603 )

Critical Price in Effect * day before

critical price

0.069 0.086 0.080 0.050

( 0.053 ) ( 0.056 ) ( 0.056 ) ( 0.063 )

Critical Price in Effect * day after

critical price

0.097∗ 0.118∗∗ 0.113∗∗ 0.037

( 0.052 ) ( 0.056 ) ( 0.056 ) ( 0.065 )

Critical Price in Effect * electric use,

kWh / day , summer 2002

-0.015∗ -0.018∗∗ -0.017∗ 0.000069
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.008 ) ( 0.009 ) ( 0.009 ) ( 0.011 )

Critical Price in Effect * high ratio rate

customer.

0.150 0.395 0.366 0.046

( 0.279 ) ( 0.294 ) ( 0.283 ) ( 0.204 )

Critical Price in Effect * apartment
0.248 0.316 0.329 0.439

( 0.197 ) ( 0.261 ) ( 0.257 ) ( 0.292 )

Critical Price in Effect * climate zone 4
-0.109 -0.083 -0.063 0.021

( 0.203 ) ( 0.217 ) ( 0.213 ) ( 0.205 )

Critical Price in Effect * cooling degree

hours 2-7pm

0.010 0.007 0.019∗ 0.004

( 0.006 ) ( 0.006 ) ( 0.011 ) ( 0.006 )

Critical Price in Effect * cooling degree

hours squared (1000’s), 2-7pm (base 78

-0.118∗∗ -0.083∗ -0.317 -0.089∗

( 0.047 ) ( 0.049 ) ( 0.217 ) ( 0.048 )

Critical Price in Effect * heating degree

hours 2-7pm

-0.119 -0.092 -0.031 -0.051

( 0.117 ) ( 0.113 ) ( 0.121 ) ( 0.358 )

Critical Price in Effect * central AC
. -0.226 -0.178 -0.245

. ( 0.167 ) ( 0.234 ) ( 0.222 )

Critical Price in Effect * room AC
. 0.298 0.290 -0.807∗∗

. ( 0.214 ) ( 0.212 ) ( 0.370 )

Critical Price in Effect * number of

bedrooms

. 0.056 0.064 0.052

. ( 0.114 ) ( 0.111 ) ( 0.121 )

Critical Price in Effect * # people in

the household

. 0.053 0.056 0.159

. ( 0.047 ) ( 0.047 ) ( 0.105 )

Critical Price in Effect * cooling degree

hours 2-7pm * central AC

. . -0.001 .

. . ( 0.003 ) .

Critical Price in Effect * cooling degree

hours 2-7pm squared * central AC

. . 0.001 .

. . ( 0.001 ) .

Critical Price in Effect * heating degree

hours 2-7pm squared (1000’s)

. . . -111.179
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 112.521 )

Critical Price in Effect * cooling degree

hours 2-7PM, previous day

. . . -0.002

. . . ( 0.002 )

Critical Price in Effect * cooling degree

hours 2-7PM, two days before

. . . 0.00049

. . . ( 0.002 )

Critical Price in Effect * cooling degree

hours 2-7PM, three days before

. . . -0.00046

. . . ( 0.002 )

Critical Price in Effect * work from

home 11-30 hrs/wk

. . . -0.813∗

. . . ( 0.468 )

Critical Price in Effect * work from

home >30 hrs/wk

. . . 0.059

. . . ( 0.506 )

Critical Price in Effect * swimming

pool

. . . 0.264

. . . ( 0.301 )

Critical Price in Effect * spa
. . . -0.619∗

. . . ( 0.329 )

Critical Price in Effect * cooling degree

hours 2-7pm * room AC

. . . 0.015∗∗∗

. . . ( 0.004 )

Critical Price in Effect * heating degree

hours 2-7PM* electric heat

. . . 0.108

. . . ( 0.472 )

Critical Price in Effect * electric heat
. . . -0.180

. . . ( 0.252 )

Critical Price in Effect * # kids under

5 in household

. . . -0.329∗∗

. . . ( 0.164 )

Critical Price in Effect * # kids over 5

in household

. . . -0.209

. . . ( 0.152 )

Critical Price in Effect * # people over

65 in household

. . . -0.352∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.191 )

Critical Price in Effect * work from

home 0-10 hrs/wk

. . . -0.071

. . . ( 0.327 )

Critical Price in Effect * electric

cooktop

. . . 0.222

. . . ( 0.369 )

Critical Price in Effect * electric oven
. . . -0.141

. . . ( 0.345 )

Critical Price in Effect * number of

refrigerators and freezers

. . . -0.322∗∗

. . . ( 0.156 )

Critical Price in Effect * customer

stayed in expt. < 4.5 months

. . . 0.052

. . . ( 0.427 )

Critical Price in Effect * customer

stayed in expt. throughout expt.

. . . -0.717∗∗

. . . ( 0.347 )

Treatment Customer
-0.134 0.262 0.297 .

( 0.118 ) ( 0.279 ) ( 0.263 ) .

Treatment Customer * electric use,

kWh / day , summer 2002

0.004 0.002 0.001 .

( 0.006 ) ( 0.007 ) ( 0.007 ) .

Treatment Customer * apartment
0.350∗∗∗ 0.152 0.186 .

( 0.110 ) ( 0.169 ) ( 0.165 ) .

Treatment Customer * climate zone 4
0.264 0.300∗ 0.242 .

( 0.173 ) ( 0.178 ) ( 0.177 ) .

Treatment Customer * cooling degree

hours 2-7pm

-0.016∗∗∗ -0.014∗∗∗ -0.014∗ -0.014∗∗∗

( 0.005 ) ( 0.005 ) ( 0.008 ) ( 0.005 )

Treatment Customer * cooling degree

hours squared (1000’s), 2-7pm

0.121∗∗∗ 0.089∗∗ 0.119 0.108∗∗

( 0.043 ) ( 0.045 ) ( 0.148 ) ( 0.043 )

Treatment Customer * heating degree

hours 2-7pm

0.018∗ 0.023∗ 0.022∗ -0.015
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.010 ) ( 0.012 ) ( 0.011 ) ( 0.022 )

Treatment Customer * central AC
. 0.055 -0.013 .

. ( 0.123 ) ( 0.125 ) .

Treatment Customer * room AC
. 0.076 0.034 .

. ( 0.173 ) ( 0.167 ) .

Treatment Customer * number of

bedrooms

. -0.138 -0.124 .

. ( 0.088 ) ( 0.084 ) .

Treatment Customer * # people in the

household

. 0.00079 0.006 .

. ( 0.035 ) ( 0.035 ) .

Treatment Customer * cooling degree

hours 2-7pm * central AC

. . 0.00012 .

. . ( 0.003 ) .

Treatment Customer * cooling degree

hours 2-7pm squared * central AC

. . -0.00019 .

. . ( 0.00087 ) .

Treatment Customer * heating degree

hours 2-7pm squared (1000’s)

. . . 0.258

. . . ( 1.260 )

Treatment Period (after 7/1/2003)
0.056 0.029 0.080 -0.417

( 0.098 ) ( 0.192 ) ( 0.186 ) ( 0.306 )

Treatment Period * electric use, kWh /

day , summer 2002

0.004 0.00053 0.00023 0.000032

( 0.003 ) ( 0.004 ) ( 0.004 ) ( 0.005 )

Treatment Period * apartment
-0.047 -0.048 -0.027 0.049

( 0.078 ) ( 0.114 ) ( 0.112 ) ( 0.138 )

Treatment Period * climate zone 4
0.098 0.069 0.045 -0.024

( 0.124 ) ( 0.132 ) ( 0.131 ) ( 0.140 )

Treatment Period * cooling degree

hours 2-7pm

-0.004 -0.005 0.002 -0.007

( 0.004 ) ( 0.004 ) ( 0.006 ) ( 0.004 )

Treatment Period * cooling degree

hours squared (1000’s), 2-7pm

0.043 0.043 -0.113 0.042
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.035 ) ( 0.035 ) ( 0.116 ) ( 0.032 )

Treatment Period * heating degree

hours 2-7pm

0.017 0.014 -0.029 -0.030

( 0.049 ) ( 0.054 ) ( 0.048 ) ( 0.114 )

Treatment Period * central AC
. 0.184∗∗ 0.065 0.227∗

. ( 0.091 ) ( 0.092 ) ( 0.125 )

Treatment Period * room AC
. -0.015 -0.018 0.210

. ( 0.102 ) ( 0.100 ) ( 0.193 )

Treatment Period * number of

bedrooms

. -0.00072 -0.003 -0.038

. ( 0.061 ) ( 0.058 ) ( 0.062 )

Treatment Period * # people in the

household

. -0.005 -0.004 -0.052

. ( 0.028 ) ( 0.028 ) ( 0.072 )

Treatment Period * cooling degree

hours 2-7pm * central AC

. . 0.00063 .

. . ( 0.002 ) .

Treatment Period * cooling degree

hours 2-7pm squared * central AC

. . 0.00091 .

. . ( 0.00069 ) .

Treatment Period * heating degree

hours 2-7pm squared (1000’s)

. . . 13.851

. . . ( 25.589 )

Treatment Period * cooling degree

hours 2-7PM, previous day

. . . 0.003∗∗∗

. . . ( 0.00059 )

Treatment Period * cooling degree

hours 2-7PM, two days before

. . . 0.00095∗

. . . ( 0.00051 )

Treatment Period * cooling degree

hours 2-7PM, three days before

. . . 0.001∗∗

. . . ( 0.00043 )

Treatment Period * work from home

11-30 hrs/wk

. . . 0.021

. . . ( 0.245 )

Treatment Period * work from home

>30 hrs/wk

. . . -0.168
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.366 )

Treatment Period * swimming pool
. . . -0.052

. . . ( 0.161 )

Treatment Period * spa
. . . 0.321

. . . ( 0.200 )

Treatment Period * cooling degree

hours 2-7pm * room AC

. . . -0.009∗∗∗

. . . ( 0.003 )

Treatment Period * heating degree

hours 2-7PM* electric heat

. . . -0.005

. . . ( 0.004 )

Treatment Period * electric heat
. . . 0.088

. . . ( 0.130 )

Treatment Period * # kids under 5 in

household

. . . 0.089

. . . ( 0.111 )

Treatment Period * # kids over 5 in

household

. . . 0.140

. . . ( 0.092 )

Treatment Period * # people over 65 in

household

. . . 0.195∗∗

. . . ( 0.090 )

Treatment Period * work from home

0-10 hrs/wk

. . . 0.078

. . . ( 0.145 )

Treatment Period * electric cooktop
. . . -0.081

. . . ( 0.228 )

Treatment Period * electric oven
. . . -0.048

. . . ( 0.211 )

Treatment Period * number of

refrigerators and freezers

. . . -0.006

. . . ( 0.099 )

Treatment Period * customer stayed in

expt. < 4.5 months

. . . -0.058
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.264 )

Treatment Period * customer stayed in

expt. throughout expt.

. . . 0.467∗∗

. . . ( 0.184 )

Critical Period
-0.152 -0.491∗∗∗ -0.384∗∗ -0.552

( 0.093 ) ( 0.148 ) ( 0.174 ) ( 0.362 )

Critical Period * electric use, kWh /

day , summer 2002

0.017∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.015∗∗∗

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.004 )

Critical Period * high ratio rate

customer.

-0.164 -0.308 -0.262 0.050

( 0.239 ) ( 0.241 ) ( 0.233 ) ( 0.166 )

Critical Period * apartment
-0.172∗∗ -0.083 -0.116 -0.258∗∗

( 0.073 ) ( 0.103 ) ( 0.102 ) ( 0.123 )

Critical Period * climate zone 4
-0.082 -0.086 -0.082 -0.082

( 0.078 ) ( 0.078 ) ( 0.076 ) ( 0.087 )

Critical Period * cooling degree hours

2-7pm

-0.00027 -0.00088 -0.00016 0.002

( 0.002 ) ( 0.002 ) ( 0.005 ) ( 0.002 )

Critical Period * cooling degree hours

squared (1000’s), 2-7pm

-0.012 -0.015 0.027 -0.018

( 0.017 ) ( 0.018 ) ( 0.086 ) ( 0.017 )

Critical Period * heating degree hours

2-7pm

0.004 0.050 -0.013 0.058

( 0.048 ) ( 0.044 ) ( 0.042 ) ( 0.288 )

Critical Period * central AC
. 0.257∗∗∗ 0.088 0.123

. ( 0.064 ) ( 0.116 ) ( 0.095 )

Critical Period * room AC
. 0.072 0.084 0.569∗∗∗

. ( 0.094 ) ( 0.093 ) ( 0.204 )

Critical Period * number of bedrooms
. 0.064 0.059 0.069

. ( 0.044 ) ( 0.044 ) ( 0.044 )

Critical Period * # people in the

household

. -0.004 -0.004 -0.017
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. ( 0.019 ) ( 0.019 ) ( 0.034 )

Critical Period * cooling degree hours

2-7pm * central AC

. . -0.002 .

. . ( 0.002 ) .

Critical Period * cooling degree hours

2-7pm squared * central AC

. . -0.00030 .

. . ( 0.00043 ) .

Critical Period * heating degree hours

2-7pm squared (1000’s)

. . . 1.806

. . . ( 54.306 )

Critical Period * cooling degree hours

2-7PM, previous day

. . . -0.001

. . . ( 0.002 )

Critical Period * cooling degree hours

2-7PM, two days before

. . . -0.00031

. . . ( 0.002 )

Critical Period * cooling degree hours

2-7PM, three days before

. . . 0.001

. . . ( 0.002 )

Critical Period * work from home 11-30

hrs/wk

. . . 0.587∗∗∗

. . . ( 0.198 )

Critical Period * work from home >30

hrs/wk

. . . -0.001

. . . ( 0.166 )

Critical Period * swimming pool
. . . -0.116

. . . ( 0.119 )

Critical Period * spa
. . . -0.029

. . . ( 0.108 )

Critical Period * cooling degree hours

2-7pm * room AC

. . . -0.004∗

. . . ( 0.003 )

Critical Period * heating degree hours

2-7PM* electric heat

. . . 0.208

. . . ( 0.275 )

Critical Period * electric heat
. . . 0.002
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

. . . ( 0.121 )

Critical Period * # kids under 5 in

household

. . . 0.051

. . . ( 0.068 )

Critical Period * # kids over 5 in

household

. . . -0.020

. . . ( 0.053 )

Critical Period * # people over 65 in

household

. . . 0.159∗

. . . ( 0.083 )

Critical Period * work from home 0-10

hrs/wk

. . . -0.061

. . . ( 0.115 )

Critical Period * electric cooktop
. . . -0.113

. . . ( 0.143 )

Critical Period * electric oven
. . . -0.011

. . . ( 0.137 )

Critical Period * number of

refrigerators and freezers

. . . -0.034

. . . ( 0.056 )

Critical Period * customer stayed in

expt. < 4.5 months

. . . -0.064

. . . ( 0.312 )

Critical Period * customer stayed in

expt. throughout expt.

. . . 0.236

. . . ( 0.148 )

electric use, kWh / day, summer 2002
0.050∗∗∗ 0.051∗∗∗ 0.050∗∗∗ .

( 0.004 ) ( 0.005 ) ( 0.005 ) .

trt. customer on high-ratio rate
-0.016 0.025 0.008 .

( 0.067 ) ( 0.073 ) ( 0.072 ) .

apartment
-0.188∗∗ -0.029 -0.088 .

( 0.088 ) ( 0.143 ) ( 0.142 ) .

climate zone 4
-0.365∗∗ -0.370∗∗ -0.334∗∗ .
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.143 ) ( 0.144 ) ( 0.144 ) .

cooling degree hours 2-7PM, base 78
0.024∗∗∗ 0.024∗∗∗ 0.014∗∗ 0.025∗∗∗

( 0.005 ) ( 0.005 ) ( 0.006 ) ( 0.005 )

cooling degree hours squared (1000’s),

2-7pm

-0.100∗∗ -0.085∗∗ -0.037 -0.090∗∗

( 0.041 ) ( 0.043 ) ( 0.115 ) ( 0.043 )

heating degree hours 2-7pm
0.037 0.040 0.056 0.081

( 0.051 ) ( 0.054 ) ( 0.050 ) ( 0.082 )

Tuesday
-0.014 -0.017 -0.017 -0.016

( 0.012 ) ( 0.013 ) ( 0.013 ) ( 0.014 )

Wednesday
-0.024∗ -0.030∗∗ -0.033∗∗ -0.037∗∗∗

( 0.013 ) ( 0.014 ) ( 0.014 ) ( 0.014 )

Thursday
-0.041∗∗∗ -0.052∗∗∗ -0.049∗∗∗ -0.034∗∗

( 0.015 ) ( 0.016 ) ( 0.016 ) ( 0.017 )

Friday
-0.017 -0.018 -0.020 -0.015

( 0.016 ) ( 0.018 ) ( 0.018 ) ( 0.018 )

year 2004
-0.049 -0.047 -0.028 0.021

( 0.045 ) ( 0.047 ) ( 0.048 ) ( 0.053 )

June
0.148∗∗∗ 0.171∗∗∗ 0.151∗∗∗ 0.095∗∗∗

( 0.029 ) ( 0.032 ) ( 0.031 ) ( 0.031 )

July
0.272∗∗∗ 0.310∗∗∗ 0.255∗∗∗ 0.196∗∗∗

( 0.047 ) ( 0.049 ) ( 0.049 ) ( 0.043 )

August
0.299∗∗∗ 0.343∗∗∗ 0.279∗∗∗ 0.235∗∗∗

( 0.057 ) ( 0.060 ) ( 0.061 ) ( 0.050 )

September
0.145∗∗∗ 0.173∗∗∗ 0.147∗∗∗ 0.095∗∗∗

( 0.031 ) ( 0.034 ) ( 0.033 ) ( 0.033 )

October
0.035 0.040 0.048 0.001
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.048 ) ( 0.052 ) ( 0.052 ) ( 0.060 )

one * heating degree hours 2-7pm

squared (1000’s)

-5.367 -3.700 -7.054 .

( 7.473 ) ( 8.744 ) ( 7.889 ) .

Tue * cooling degree hours 2-7pm
-0.00077 -0.00032 -0.00040 -0.001

( 0.00083 ) ( 0.00084 ) ( 0.00079 ) ( 0.00082 )

Tue * cooling degree hours 2-7pm

squared (1000’s)

0.003 -0.003 -0.002 0.006

( 0.008 ) ( 0.008 ) ( 0.008 ) ( 0.008 )

Tue * heating degree hours 2-7pm
-0.013∗ -0.011 -0.010 -0.022∗∗

( 0.008 ) ( 0.008 ) ( 0.008 ) ( 0.011 )

Tue * heating degree hours 2-7pm

squared (1000’s)

0.798∗ 0.697 0.625 1.159∗∗

( 0.437 ) ( 0.429 ) ( 0.408 ) ( 0.588 )

Wed * cooling degree hours 2-7pm
-0.001 -0.00046 -0.00055 -0.00086

( 0.00084 ) ( 0.00084 ) ( 0.00081 ) ( 0.00089 )

Wed * cooling degree hours 2-7pm

squared (1000’s)

0.013 0.004 0.005 0.008

( 0.008 ) ( 0.008 ) ( 0.008 ) ( 0.009 )

Wed * heating degree hours 2-7pm
0.007 0.005 0.008 0.00028

( 0.018 ) ( 0.019 ) ( 0.018 ) ( 0.015 )

Wed * heating degree hours 2-7pm

squared (1000’s)

-0.525 -0.177 -0.251 0.070

( 1.166 ) ( 1.089 ) ( 1.013 ) ( 0.791 )

Thu * cooling degree hours 2-7pm
-0.00044 0.00050 0.000045 -0.00052

( 0.00094 ) ( 0.001 ) ( 0.00092 ) ( 0.00089 )

Thu * cooling degree hours 2-7pm

squared (1000’s)

0.002 -0.006 -0.001 0.004

( 0.009 ) ( 0.010 ) ( 0.009 ) ( 0.009 )

Thu * heating degree hours 2-7pm
-0.034∗∗∗ -0.031∗∗∗ -0.030∗∗∗ -0.039∗∗∗

( 0.010 ) ( 0.011 ) ( 0.011 ) ( 0.011 )

Thu * heating degree hours 2-7pm

squared (1000’s)

2.118∗∗∗ 1.907∗∗ 2.105∗∗∗ 2.936∗∗∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.742 ) ( 0.836 ) ( 0.750 ) ( 0.663 )

Fri * cooling degree hours 2-7pm
-0.002∗∗ -0.001 -0.002∗ -0.000079

( 0.00097 ) ( 0.001 ) ( 0.001 ) ( 0.00097 )

Fri * cooling degree hours 2-7pm

squared (1000’s)

0.015∗ 0.011 0.018 -0.002

( 0.009 ) ( 0.010 ) ( 0.012 ) ( 0.010 )

Fri * heating degree hours 2-7pm
-0.029∗∗∗ -0.028∗∗ -0.027∗∗ -0.034∗∗∗

( 0.010 ) ( 0.011 ) ( 0.011 ) ( 0.010 )

Fri * heating degree hours 2-7pm

squared (1000’s)

2.036∗∗∗ 1.851∗∗ 2.017∗∗∗ 2.818∗∗∗

( 0.740 ) ( 0.833 ) ( 0.742 ) ( 0.646 )

year 2004 * cooling degree hours 2-7pm -0.004 -0.004∗ -0.005∗∗ -0.004

( 0.002 ) ( 0.002 ) ( 0.003 ) ( 0.002 )

year 2004 * cooling degree hours 2-7pm

squared (1000’s)

0.035∗ 0.038∗ 0.047∗∗ 0.038∗

( 0.021 ) ( 0.023 ) ( 0.023 ) ( 0.022 )

year 2004 * heating degree hours 2-7pm -0.029 -0.017 -0.00080 -0.039

( 0.064 ) ( 0.065 ) ( 0.062 ) ( 0.067 )

year 2004 * heating degree hours 2-7pm

squared (1000’s)

4.084 1.189 5.045 -3.607

( 7.353 ) ( 8.695 ) ( 7.886 ) ( 17.346 )

June * cooling degree hours 2-7pm
-0.002 -0.004∗ -0.003 0.002

( 0.003 ) ( 0.003 ) ( 0.002 ) ( 0.002 )

June * cooling degree hours 2-7pm

squared (1000’s)

0.019 0.043 0.028 -0.013

( 0.031 ) ( 0.031 ) ( 0.028 ) ( 0.025 )

June * heating degree hours 2-7pm
-0.033 -0.040 -0.063 -0.089

( 0.049 ) ( 0.053 ) ( 0.048 ) ( 0.084 )

June * heating degree hours 2-7pm

squared (1000’s)

4.385 2.873 6.234 10.724

( 7.399 ) ( 8.675 ) ( 7.791 ) ( 12.594 )

July * cooling degree hours 2-7pm
-0.003 -0.004 -0.001 -0.001
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.002 )

July * cooling degree hours 2-7pm

squared (1000’s)

0.026 0.035 0.004 0.018

( 0.026 ) ( 0.027 ) ( 0.024 ) ( 0.026 )

July * heating degree hours 2-7pm
0.017 0.080 0.00052 -0.182∗∗∗

( 0.071 ) ( 0.089 ) ( 0.079 ) ( 0.050 )

July * heating degree hours 2-7pm

squared (1000’s)

-9.070 -16.535 -1.704 3.710

( 10.990 ) ( 13.126 ) ( 11.569 ) ( 14.075 )

Aug * cooling degree hours 2-7pm
-0.005∗ -0.007∗∗ -0.004 -0.003

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.002 )

Aug * cooling degree hours 2-7pm

squared (1000’s)

0.039 0.051∗∗ 0.022 0.024

( 0.025 ) ( 0.026 ) ( 0.024 ) ( 0.023 )

Aug * heating degree hours 2-7pm
-0.710∗∗∗ -0.861∗∗∗ -1.033∗∗∗ -0.582∗∗∗

( 0.260 ) ( 0.279 ) ( 0.244 ) ( 0.172 )

Aug * heating degree hours 2-7pm

squared (1000’s)

343.860∗∗ 447.452∗∗∗ 512.971∗∗∗ 152.020

( 149.653 ) ( 159.862 ) ( 142.571 ) ( 92.895 )

Sept * cooling degree hours 2-7pm
-0.006∗∗∗ -0.008∗∗∗ -0.006∗∗∗ -0.003

( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 )

Sept * cooling degree hours 2-7pm

squared (1000’s)

0.052∗∗ 0.063∗∗∗ 0.044∗∗ 0.028

( 0.022 ) ( 0.023 ) ( 0.022 ) ( 0.022 )

Sept * heating degree hours 2-7pm
-0.054 -0.120 -0.116 -0.134

( 0.074 ) ( 0.087 ) ( 0.075 ) ( 0.117 )

Sept * heating degree hours 2-7pm

squared (1000’s)

-0.570 8.352 10.971 20.700

( 11.572 ) ( 13.015 ) ( 11.202 ) ( 16.934 )

Oct * cooling degree hours 2-7pm
-0.016∗∗∗ -0.017∗∗∗ -0.018∗∗∗ -0.010∗∗∗

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 )

Oct * cooling degree hours 2-7pm

squared (1000’s)

0.121∗∗∗ 0.138∗∗∗ 0.147∗∗∗ 0.055∗
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls

( 0.030 ) ( 0.032 ) ( 0.034 ) ( 0.031 )

Oct * heating degree hours 2-7pm
-0.025 -0.027 -0.00098 -0.015

( 0.068 ) ( 0.068 ) ( 0.064 ) ( 0.069 )

Oct * heating degree hours 2-7pm

squared (1000’s)

3.333 1.845 5.036 -5.471

( 7.406 ) ( 8.492 ) ( 7.695 ) ( 16.987 )

constant
-0.259∗∗∗ -0.766∗∗∗ -0.545∗∗ 0.694∗∗∗

( 0.092 ) ( 0.220 ) ( 0.212 ) ( 0.055 )

central AC
. 0.041 -0.148 .

. ( 0.098 ) ( 0.097 ) .

room AC
. 0.021 0.017 .

. ( 0.136 ) ( 0.133 ) .

number of bedrooms
. 0.116∗ 0.104 .

. ( 0.069 ) ( 0.067 ) .

# people in the household
. 0.018 0.017 .

. ( 0.024 ) ( 0.025 ) .

cooling degree hours 2-7pm * central

AC

. . 0.010∗∗∗ .

. . ( 0.002 ) .

cooling degree hours 2-7pm squared *

central AC

. . -0.00026 .

. . ( 0.00064 ) .

heating degree hours 2-7pm squared,

1000’s

. . . -11.161

. . . ( 12.514 )

N 68372 59686 59686 46191

R2 0.4559 0.4636 0.4773 0.6289

Robust standard errors, clustered by customer in parentheses.

Significance: *=10% ** =5% ***=1%

Cooling degree hours are base 78o F. Heating degree hours are base 65o F.
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Specification

1: Simplest

Diff in Diff

Specification

2: Adding

Survey

Variables

Specification

3: Adding

CAC*CDH

interactions

Specification

4: Adds

person

FE’s;

controls
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Appendix F

CPP Impacts Split into High and

Low / Apartment Customers

F.1 Specification 2: Survey Variables and Specification 3:

Adding CAC*CDH interactions

The table below provides complete results from the regressions presented above in

tables 2.8 and 2.9.

Dependent variable: consumption on non holiday weekdays in kWh/h. Negative

values indicate that dynamic pricing customers used less power than comparable control

customers.
Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

TOU Peak Price in Effect
-0.134 -0.183 -0.148 -0.063

( 0.156 ) ( 0.377 ) ( 0.154 ) ( 0.363 )

TOU Peak Price in Effect * day

before critical price

0.001 0.008 0.003 0.013

( 0.013 ) ( 0.034 ) ( 0.013 ) ( 0.034 )

TOU Peak Price in Effect * day

after critical price

0.042∗∗∗ 0.012 0.041∗∗∗ 0.013

( 0.016 ) ( 0.030 ) ( 0.015 ) ( 0.030 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

TOU Peak Price in Effect * elec. use,

kWh / day summer ‘02

-0.003 -0.007 -0.002 -0.007

( 0.008 ) ( 0.011 ) ( 0.008 ) ( 0.011 )

TOU Peak Price in Effect * high

ratio rate customer.

0.034 -0.170∗ 0.040 -0.165∗

( 0.046 ) ( 0.097 ) ( 0.047 ) ( 0.096 )

TOU Peak Price in Effect *

apartment

0.005 . 0.004 .

( 0.089 ) . ( 0.091 ) .

TOU Peak Price in Effect * climate

zone 2

-0.016 -0.354∗∗ -0.022 -0.333∗∗

( 0.068 ) ( 0.140 ) ( 0.067 ) ( 0.132 )

TOU Peak Price in Effect * climate

zone 3

-0.177∗ -0.030 -0.179∗ -0.005

( 0.097 ) ( 0.244 ) ( 0.097 ) ( 0.236 )

TOU Peak Price in Effect * climate

zone 4

-0.039 -0.607∗ 0.022 -0.632∗

( 0.180 ) ( 0.361 ) ( 0.172 ) ( 0.360 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm

0.006 0.013∗∗ 0.00036 0.020∗

( 0.004 ) ( 0.006 ) ( 0.006 ) ( 0.012 )

TOU Pk. Price in Effect * cooling

degree hrs squared (1000’s), 2-7pm

-0.071∗ -0.092 0.070 -0.204

( 0.038 ) ( 0.064 ) ( 0.133 ) ( 0.292 )

TOU Peak Price in Effect *

heating degree hours 2-7pm

-0.002 0.005 -0.002 0.004

( 0.002 ) ( 0.006 ) ( 0.002 ) ( 0.005 )

TOU Peak Price in Effect * central

AC

0.030 -0.017 0.043 0.012

( 0.087 ) ( 0.175 ) ( 0.091 ) ( 0.171 )

TOU Peak Price in Effect * room

AC

0.129 0.170 0.143 0.156

( 0.094 ) ( 0.167 ) ( 0.095 ) ( 0.163 )

TOU Peak Price in Effect *

number of bedrooms

0.072 0.071 0.068 0.044

( 0.045 ) ( 0.075 ) ( 0.044 ) ( 0.070 )

TOU Peak Price in Effect * #

people in the household

-0.015 0.081∗ -0.013 0.069

( 0.026 ) ( 0.045 ) ( 0.026 ) ( 0.044 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm * central AC

. . -0.00013 -0.003

. . ( 0.003 ) ( 0.005 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

TOU Pk Price in Effect * cooling

degree hrs 2-7pm squared * central AC

. . -0.00089 0.00067

. . ( 0.00081 ) ( 0.002 )

Critical Price in Effect
-0.093 0.389 -0.189 0.470

( 0.210 ) ( 0.467 ) ( 0.206 ) ( 0.451 )

Critical Price in Effect * day before

critical price

0.068∗∗ 0.117∗ 0.055∗ 0.100

( 0.029 ) ( 0.062 ) ( 0.029 ) ( 0.063 )

Critical Price in Effect * day after

critical price

0.048 0.071 0.033 0.055

( 0.031 ) ( 0.058 ) ( 0.031 ) ( 0.058 )

Crit. Price in Effect * elec. use, kWh

/ day summer 2002

-0.015 -0.020 -0.012 -0.020

( 0.011 ) ( 0.012 ) ( 0.011 ) ( 0.012 )

Critical Price in Effect * high ratio

rate customer.

0.280 0.190 0.238 0.275

( 0.173 ) ( 0.216 ) ( 0.162 ) ( 0.209 )

Critical Price in Effect * apartment 0.014 . 0.038 .

( 0.131 ) . ( 0.131 ) .

Critical Price in Effect * climate

zone 2

0.033 -0.265 0.017 -0.322∗

( 0.083 ) ( 0.187 ) ( 0.080 ) ( 0.179 )

Critical Price in Effect * climate

zone 3

-0.108 0.260 -0.116 0.258

( 0.141 ) ( 0.297 ) ( 0.144 ) ( 0.287 )

Critical Price in Effect * climate

zone 4

0.019 -0.080 0.057 -0.103

( 0.236 ) ( 0.436 ) ( 0.224 ) ( 0.432 )

Critical Price in Effect * cooling

degree hours 2-7pm

0.004 0.012 0.002 0.020

( 0.005 ) ( 0.007 ) ( 0.007 ) ( 0.014 )

crit. price in effect * cooling degree

hours squared (1000’s)

-0.058 -0.092 -0.010 -0.251

( 0.046 ) ( 0.074 ) ( 0.163 ) ( 0.330 )

crit. price in Effect * heating degree

hours 2-7pm

0.008 -0.007 0.005 -0.005

( 0.010 ) ( 0.017 ) ( 0.007 ) ( 0.015 )

Critical Price in Effect * central

AC

-0.102 -0.545∗∗ -0.040 -0.272

( 0.127 ) ( 0.227 ) ( 0.139 ) ( 0.250 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

Critical Price in Effect * room AC
0.219∗ 0.534∗∗ 0.224 0.520∗∗

( 0.128 ) ( 0.248 ) ( 0.136 ) ( 0.248 )

Critical Price in Effect * number of

bedrooms

0.044 0.013 0.051 -0.012

( 0.065 ) ( 0.108 ) ( 0.064 ) ( 0.105 )

Critical Price in Effect * # people

in the household

0.019 0.028 0.026 0.009

( 0.030 ) ( 0.052 ) ( 0.030 ) ( 0.053 )

crit. price in effect * cooling degree

hours 2-7pm * central AC

. . -0.00074 -0.005

. . ( 0.003 ) ( 0.005 )

Critical Price in Effect * CDH

2-7pm squared * central AC

. . -0.00035 0.001

. . ( 0.00092 ) ( 0.002 )

Treatment Customer
0.181 0.536 0.104 0.328

( 0.180 ) ( 0.406 ) ( 0.173 ) ( 0.393 )

Trt. Customer * elec. use, kWh / day

summer ’02

0.003 0.007 0.004 0.008

( 0.008 ) ( 0.011 ) ( 0.008 ) ( 0.011 )

Treatment Customer * apartment
-0.039 . -0.015 .

( 0.088 ) . ( 0.086 ) .

Treatment Customer * climate

zone 2

-0.059 0.276 -0.059 0.180

( 0.069 ) ( 0.200 ) ( 0.066 ) ( 0.191 )

Treatment Customer * climate

zone 3

0.044 0.231 0.064 0.184

( 0.086 ) ( 0.307 ) ( 0.083 ) ( 0.298 )

Treatment Customer * climate

zone 4

0.012 0.923∗∗ -0.023 0.949∗∗

( 0.183 ) ( 0.430 ) ( 0.173 ) ( 0.427 )

Treatment Customer * cooling

degree hours 2-7pm

-0.007 -0.018∗∗ -0.00098 -0.021∗

( 0.005 ) ( 0.007 ) ( 0.005 ) ( 0.012 )

Treatment Customer * cooling

degree hours squared (1000’s)

0.058 0.088 -0.076 0.291

( 0.042 ) ( 0.072 ) ( 0.115 ) ( 0.276 )

Treatment Customer * heating

degree hours 2-7pm

0.001 -0.004 0.00088 -0.003

( 0.002 ) ( 0.006 ) ( 0.002 ) ( 0.005 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

Treatment Customer * central AC
-0.055 -0.281 -0.060 -0.199

( 0.076 ) ( 0.190 ) ( 0.081 ) ( 0.181 )

Treatment Customer * room AC
0.034 0.150 0.035 0.183

( 0.085 ) ( 0.218 ) ( 0.082 ) ( 0.220 )

Treatment Customer * number of

bedrooms

-0.103∗∗ -0.169∗ -0.085∗∗ -0.132

( 0.045 ) ( 0.088 ) ( 0.043 ) ( 0.086 )

Treatment Customer * # people in

the household

0.034 -0.076∗ 0.040 -0.064

( 0.024 ) ( 0.045 ) ( 0.024 ) ( 0.045 )

Trt. Cust. * cooling degree hours

2-7pm * central AC

. . -0.001 -0.007

. . ( 0.003 ) ( 0.006 )

Trt. Cust. * cooling degree hours

2-7pm squared * central AC

. . 0.00086 -0.001

. . ( 0.00074 ) ( 0.002 )

Treatment Period (after 7/1/2003)
0.042 0.116 0.056 0.006

( 0.116 ) ( 0.294 ) ( 0.115 ) ( 0.276 )

Treatment Period * electricity use,

kWh / day summer 2002

0.004 0.008 0.002 0.008

( 0.006 ) ( 0.007 ) ( 0.006 ) ( 0.007 )

Treatment Period * apartment
0.016 . 0.013 .

( 0.066 ) . ( 0.068 ) .

Treatment Period * climate zone 2
-0.056 0.273∗∗ -0.031 0.261∗∗

( 0.050 ) ( 0.113 ) ( 0.048 ) ( 0.106 )

Treatment Period * climate zone 3
0.077 -0.063 0.098 -0.065

( 0.068 ) ( 0.199 ) ( 0.068 ) ( 0.190 )

Treatment Period * climate zone 4
-0.118 0.163 -0.099 0.239

( 0.132 ) ( 0.256 ) ( 0.127 ) ( 0.250 )

Treatment Period * cooling degree

hours 2-7pm

0.002 -0.008 0.006 -0.003

( 0.004 ) ( 0.006 ) ( 0.004 ) ( 0.009 )

Treatment Pd. * cooling degree hours

squared (1000’s), 2-7pm

-0.019 0.059 -0.147 -0.034

( 0.032 ) ( 0.055 ) ( 0.094 ) ( 0.196 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

Treatment Period * heating degree

hours 2-7pm

-0.001 -0.001 -0.00051 -0.00080

( 0.003 ) ( 0.009 ) ( 0.003 ) ( 0.008 )

Treatment Period * central AC
0.097 0.138 0.028 0.099

( 0.060 ) ( 0.146 ) ( 0.067 ) ( 0.146 )

Treatment Period * room AC
-0.068 -0.104 -0.062 -0.112

( 0.067 ) ( 0.107 ) ( 0.068 ) ( 0.104 )

Treatment Period * number of

bedrooms

-0.032 -0.059 -0.033 -0.040

( 0.035 ) ( 0.054 ) ( 0.035 ) ( 0.047 )

Treatment Period * # people in

the household

0.011 -0.034 0.013 -0.023

( 0.021 ) ( 0.033 ) ( 0.020 ) ( 0.032 )

Treatment Pd. * cooling degree hours

2-7pm * central AC

. . 0.00052 -0.002

. . ( 0.002 ) ( 0.004 )

Trt. Pd. * cooling degree hours 2-7pm

squared * central AC

. . 0.00090 0.00061

. . ( 0.00057 ) ( 0.001 )

Critical Period
-0.187∗ -0.844∗∗∗ -0.107 -0.792∗∗∗

( 0.108 ) ( 0.203 ) ( 0.097 ) ( 0.201 )

Critical Period * electricity use,

kWh / day summer 2002

0.015∗∗∗ 0.013∗∗ 0.013∗∗∗ 0.012∗∗

( 0.005 ) ( 0.005 ) ( 0.005 ) ( 0.005 )

Critical Period * high ratio rate

customer.

-0.204 -0.305 -0.157 -0.387∗∗

( 0.148 ) ( 0.190 ) ( 0.136 ) ( 0.180 )

Critical Period * apartment
0.030 . 0.006 .

( 0.066 ) . ( 0.063 ) .

Critical Period * climate zone 2
-0.025 -0.080 -0.019 -0.022

( 0.032 ) ( 0.082 ) ( 0.030 ) ( 0.076 )

Critical Period * climate zone 3
0.114 -0.160 0.097 -0.165

( 0.070 ) ( 0.160 ) ( 0.072 ) ( 0.150 )

Critical Period * climate zone 4
0.061 -0.191 0.038 -0.231

( 0.106 ) ( 0.207 ) ( 0.101 ) ( 0.197 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

Critical Period * cooling degree

hours 2-7pm

-0.001 -0.004 0.00069 0.003

( 0.002 ) ( 0.003 ) ( 0.003 ) ( 0.005 )

Critical Period * cooling degree

hours squared (1000’s), 2-7pm

-0.018 -0.00013 -0.011 -0.030

( 0.014 ) ( 0.027 ) ( 0.067 ) ( 0.096 )

Critical Period * heating degree

hours 2-7pm

-0.009 0.008 -0.006 0.004

( 0.007 ) ( 0.015 ) ( 0.005 ) ( 0.014 )

Critical Period * central AC
0.211∗∗∗ 0.576∗∗∗ 0.072 0.329∗∗∗

( 0.057 ) ( 0.100 ) ( 0.060 ) ( 0.126 )

Critical Period * room AC
-0.051 -0.016 -0.048 -0.024

( 0.067 ) ( 0.130 ) ( 0.073 ) ( 0.130 )

Critical Period * number of

bedrooms

0.018 0.074∗ 0.010 0.070

( 0.028 ) ( 0.043 ) ( 0.027 ) ( 0.043 )

Critical Period * # people in the

household

-0.022 0.044∗∗ -0.023 0.052∗∗

( 0.015 ) ( 0.021 ) ( 0.014 ) ( 0.022 )

Critical Period * cooling degree

hours 2-7pm * central AC

. . -0.001 -0.002

. . ( 0.00100 ) ( 0.002 )

Critical Period * cooling degree

hours 2-7pm squared * central AC

. . -0.000085 -0.000012

. . ( 0.00036 ) ( 0.00051 )

electricity use, kWh / day summer

2002

0.041∗∗∗ 0.041∗∗∗ 0.040∗∗∗ 0.041∗∗∗

( 0.006 ) ( 0.009 ) ( 0.006 ) ( 0.009 )

trt. customer on high-ratio rate
-0.004 0.080 -0.006 0.081

( 0.040 ) ( 0.090 ) ( 0.039 ) ( 0.090 )

apartment
0.079 . 0.045 .

( 0.077 ) . ( 0.076 ) .

climate zone 2
0.043 -0.257 0.060 -0.124

( 0.056 ) ( 0.179 ) ( 0.053 ) ( 0.171 )

climate zone 3
-0.00030 -0.176 0.023 -0.092

( 0.066 ) ( 0.275 ) ( 0.064 ) ( 0.266 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

climate zone 4
-0.046 -0.627∗ -0.032 -0.696∗∗

( 0.150 ) ( 0.358 ) ( 0.143 ) ( 0.351 )

cooling degree hours 2-7PM,
0.010∗∗ 0.032∗∗∗ 0.003 0.024∗∗

( 0.004 ) ( 0.007 ) ( 0.004 ) ( 0.010 )

heating degree hours 2-7pm
0.007∗ 0.005 0.005 -0.001

( 0.004 ) ( 0.010 ) ( 0.004 ) ( 0.009 )

central AC
0.077 0.284∗ -0.022 0.083

( 0.057 ) ( 0.164 ) ( 0.061 ) ( 0.154 )

room AC
-0.011 0.040 -0.005 0.027

( 0.070 ) ( 0.169 ) ( 0.069 ) ( 0.173 )

number of bedrooms
0.087∗∗ 0.117∗ 0.072∗∗ 0.086

( 0.037 ) ( 0.067 ) ( 0.034 ) ( 0.065 )

# people in the household
0.010 0.059∗ 0.008 0.054∗

( 0.022 ) ( 0.033 ) ( 0.021 ) ( 0.032 )

Tuesday
-0.006 -0.001 -0.006 0.002

( 0.008 ) ( 0.016 ) ( 0.008 ) ( 0.016 )

Wednesday
-0.003 -0.011 -0.004 -0.009

( 0.008 ) ( 0.018 ) ( 0.008 ) ( 0.018 )

Thursday
-0.008 -0.044∗∗ -0.008 -0.037∗∗

( 0.011 ) ( 0.018 ) ( 0.011 ) ( 0.018 )

Friday
0.003 -0.008 0.001 -0.006

( 0.010 ) ( 0.024 ) ( 0.010 ) ( 0.024 )

year 2004
-0.018 -0.051 -0.016 -0.043

( 0.028 ) ( 0.060 ) ( 0.029 ) ( 0.060 )

June
0.041∗∗∗ 0.172∗∗∗ 0.034∗∗ 0.153∗∗∗

( 0.014 ) ( 0.037 ) ( 0.014 ) ( 0.037 )

July
0.086∗∗∗ 0.370∗∗∗ 0.072∗∗∗ 0.324∗∗∗

( 0.020 ) ( 0.054 ) ( 0.021 ) ( 0.053 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

August
0.103∗∗∗ 0.420∗∗∗ 0.087∗∗∗ 0.367∗∗∗

( 0.023 ) ( 0.066 ) ( 0.023 ) ( 0.066 )

September
0.080∗∗∗ 0.203∗∗∗ 0.069∗∗∗ 0.174∗∗∗

( 0.020 ) ( 0.047 ) ( 0.021 ) ( 0.047 )

October
0.043 0.045 0.039 0.037

( 0.029 ) ( 0.072 ) ( 0.029 ) ( 0.072 )

heating degree hours 2-7pm

squared (1000’s)

-0.181∗∗ 0.023 -0.136∗ 0.138

( 0.081 ) ( 0.192 ) ( 0.074 ) ( 0.178 )

Tue * cooling degree hours 2-7pm
-0.00045 -0.001 -0.00053 -0.002∗

( 0.00076 ) ( 0.001 ) ( 0.00071 ) ( 0.001 )

Tue * cooling degree hours 2-7pm

squared (1000’s)

-0.004 0.009 -0.003 0.017

( 0.008 ) ( 0.012 ) ( 0.007 ) ( 0.012 )

Tue * heating degree hours 2-7pm
0.00058 -0.009∗∗ 0.00096 -0.009∗∗

( 0.002 ) ( 0.004 ) ( 0.001 ) ( 0.004 )

Tue * heating degree hours 2-7pm

squared (1000’s)

0.015 0.130∗ 0.006 0.121∗

( 0.027 ) ( 0.073 ) ( 0.024 ) ( 0.070 )

Wed * cooling degree hours 2-7pm
-0.00067 -0.003∗∗ -0.00100 -0.004∗∗∗

( 0.00079 ) ( 0.001 ) ( 0.00078 ) ( 0.001 )

Wed * cooling degree hours 2-7pm

squared (1000’s)

0.003 0.032∗∗ 0.006 0.038∗∗

( 0.008 ) ( 0.015 ) ( 0.008 ) ( 0.015 )

Wed * heating degree hours 2-7pm
0.00058 0.002 0.00086 0.003

( 0.002 ) ( 0.005 ) ( 0.002 ) ( 0.005 )

Wed * heating degree hours 2-7pm

squared (1000’s)

0.008 -0.022 -0.00027 -0.038

( 0.035 ) ( 0.101 ) ( 0.032 ) ( 0.099 )

Thu * cooling degree hours 2-7pm
-0.00075 -0.002 -0.001 -0.003∗∗

( 0.00089 ) ( 0.001 ) ( 0.00084 ) ( 0.001 )

Thu * cooling degree hours 2-7pm

squared (1000’s)

0.001 0.021 0.005 0.035∗∗

( 0.009 ) ( 0.014 ) ( 0.009 ) ( 0.014 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

Thu * heating degree hours 2-7pm
-0.001 -0.009 -0.00088 -0.008

( 0.002 ) ( 0.005 ) ( 0.002 ) ( 0.005 )

Thu * heating degree hours 2-7pm

squared (1000’s)

0.050 0.223∗∗ 0.036 0.191∗∗

( 0.045 ) ( 0.102 ) ( 0.037 ) ( 0.093 )

Fri * cooling degree hours 2-7pm
-0.002∗ -0.002∗ -0.002∗∗ -0.004∗∗

( 0.00098 ) ( 0.002 ) ( 0.00097 ) ( 0.002 )

Fri * cooling degree hours 2-7pm

squared (1000’s)

0.013 0.017 0.018∗ 0.035∗

( 0.010 ) ( 0.016 ) ( 0.010 ) ( 0.021 )

Fri * heating degree hours 2-7pm
-0.004∗ -0.013∗∗ -0.003 -0.011∗∗

( 0.002 ) ( 0.006 ) ( 0.002 ) ( 0.005 )

Fri * heating degree hours 2-7pm

squared (1000’s)

0.091∗∗ 0.211∗∗ 0.072∗ 0.173∗

( 0.043 ) ( 0.099 ) ( 0.037 ) ( 0.093 )

year 2004 * cooling degree hours

2-7pm

-0.005∗∗∗ -0.004 -0.005∗∗∗ -0.005

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.004 )

June * cooling degree hours 2-7pm
-0.002 -0.004 -0.003 -0.002

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.004 )

June * cooling degree hours 2-7pm

squared (1000’s)

0.026 0.043 0.025 0.019

( 0.031 ) ( 0.052 ) ( 0.027 ) ( 0.048 )

June * heating degree hours 2-7pm
-0.004 -0.002 -0.003 -0.00062

( 0.002 ) ( 0.007 ) ( 0.002 ) ( 0.007 )

June * heating degree hours 2-7pm

squared (1000’s)

0.065∗ 0.014 0.057∗ -0.007

( 0.036 ) ( 0.094 ) ( 0.035 ) ( 0.096 )

July * cooling degree hours 2-7pm
-0.003 -0.002 -0.002 0.002

( 0.002 ) ( 0.005 ) ( 0.002 ) ( 0.004 )

July * cooling degree hours 2-7pm

squared (1000’s)

0.030 0.009 0.018 -0.030

( 0.024 ) ( 0.046 ) ( 0.022 ) ( 0.041 )

July * heating degree hours 2-7pm
-0.009∗∗ -0.035∗∗∗ -0.007∗ -0.031∗∗∗

( 0.004 ) ( 0.012 ) ( 0.004 ) ( 0.011 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

July * heating degree hours 2-7pm

squared (1000’s)

0.141 1.100∗∗ 0.124 1.055∗∗

( 0.123 ) ( 0.436 ) ( 0.113 ) ( 0.422 )

Aug * cooling degree hours 2-7pm
-0.003 -0.004 -0.002 -0.00086

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.004 )

Aug * cooling degree hours 2-7pm

squared (1000’s)

0.032 0.021 0.021 -0.015

( 0.023 ) ( 0.041 ) ( 0.022 ) ( 0.038 )

Aug * heating degree hours 2-7pm
-0.024∗∗ -0.070∗∗∗ -0.020∗∗ -0.064∗∗∗

( 0.010 ) ( 0.025 ) ( 0.008 ) ( 0.025 )

Aug * heating degree hours 2-7pm

squared (1000’s)

0.680∗ 2.047∗ 0.562 1.984∗

( 0.410 ) ( 1.063 ) ( 0.344 ) ( 1.032 )

Sept * cooling degree hours 2-7pm
-0.007∗∗∗ -0.007∗ -0.005∗∗∗ -0.004

( 0.002 ) ( 0.003 ) ( 0.002 ) ( 0.003 )

Sept * cooling degree hours 2-7pm

squared (1000’s)

0.059∗∗∗ 0.040 0.042∗∗ 0.016

( 0.020 ) ( 0.036 ) ( 0.020 ) ( 0.035 )

Sept * heating degree hours 2-7pm
-0.004 -0.00023 -0.003 0.003

( 0.003 ) ( 0.007 ) ( 0.003 ) ( 0.007 )

Sept * heating degree hours 2-7pm

squared (1000’s)

0.069 -0.073 0.052 -0.111

( 0.042 ) ( 0.095 ) ( 0.036 ) ( 0.095 )

Oct * cooling degree hours 2-7pm
-0.013∗∗∗ -0.020∗∗∗ -0.012∗∗∗ -0.021∗∗∗

( 0.003 ) ( 0.005 ) ( 0.003 ) ( 0.005 )

Oct * cooling degree hours 2-7pm

squared (1000’s)

0.103∗∗∗ 0.139∗∗∗ 0.090∗∗∗ 0.149∗∗

( 0.029 ) ( 0.053 ) ( 0.031 ) ( 0.058 )

Oct * heating degree hours 2-7pm
-0.002 0.010 -0.00056 0.015∗

( 0.003 ) ( 0.008 ) ( 0.003 ) ( 0.008 )

Oct * heating degree hours 2-7pm

squared (1000’s)

0.090 -0.253 0.061 -0.333∗∗

( 0.064 ) ( 0.167 ) ( 0.059 ) ( 0.161 )

constant
-0.369∗∗ -0.819∗∗ -0.278∗ -0.606∗

( 0.166 ) ( 0.349 ) ( 0.160 ) ( 0.335 )
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Specification 2: Adding

Survey Variables

Specification 3: Adding

CAC*CDH interactions

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

cooling degree hours squared

(1000’s), 2-7pm

-0.015 -0.076 0.068 -0.222

( 0.037 ) ( 0.073 ) ( 0.091 ) ( 0.201 )

cooling degree hours 2-7pm *

central AC

. . 0.009∗∗∗ 0.019∗∗∗

. . ( 0.003 ) ( 0.004 )

cooling degree hours 2-7pm

squared * central AC

. . -0.00068 0.00065

. . ( 0.00056 ) ( 0.001 )

N 54446 47535 54446 47535

R-squared 0.3715 0.4331 0.3964 0.4436

Robust standard errors, clustered by customer in parentheses.

Significance: *=10% ** =5% ***=1%

Cooling degree hours are base 78o F. Heating degree hours are base 65o F.

F.2 Specification 1: Basic Difference-in-Difference and Spec-

ification 4 Fixed Effects and Additional Controls

Dependent variable: consumption on non holiday weekdays in kWh/h. Negative

values indicate that dynamic pricing customers used less power than comparable control

customers.
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

TOU Peak Price in Effect
-0.012 0.341 0.318 -0.347

( 0.093 ) ( 0.244 ) ( 0.201 ) ( 0.583 )

TOU peak price in effect * day before

critical price

0.002 0.005 0.002 0.003

( 0.012 ) ( 0.033 ) ( 0.013 ) ( 0.031 )

TOU peak price in effect * day after

critical price

0.035∗∗ 0.004 0.026 -0.010

( 0.014 ) ( 0.029 ) ( 0.016 ) ( 0.026 )

TOU Peak Price in Effect * elec. use,

kWh / day, summer ‘02

-0.002 -0.005 0.003 -0.002
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.007 ) ( 0.010 ) ( 0.009 ) ( 0.011 )

TOU Peak Price in Effect * high ratio

rate customer

0.058 -0.206∗∗ 0.058 -0.105

( 0.040 ) ( 0.092 ) ( 0.056 ) ( 0.105 )

TOU Peak Price in Effect * apartment
-0.049 . 0.075 .

( 0.062 ) . ( 0.104 ) .

TOU Peak Price in Effect * climate

zone 2

0.031 -0.298∗∗ -0.031 -0.179

( 0.054 ) ( 0.121 ) ( 0.082 ) ( 0.251 )

TOU Peak Price in Effect * climate

zone 3

-0.114 -0.038 -0.208∗ 0.101

( 0.074 ) ( 0.188 ) ( 0.112 ) ( 0.295 )

TOU Peak Price in Effect * climate

zone 4

0.006 -0.783∗∗∗ 0.039 -0.027

( 0.160 ) ( 0.295 ) ( 0.208 ) ( 0.416 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm

0.008∗∗ 0.012∗∗ 0.006 0.011∗

( 0.004 ) ( 0.006 ) ( 0.005 ) ( 0.007 )

TOU Peak Price in Effect * cooling degree

hours squared (1000’s), 2-7pm

-0.096∗∗∗ -0.100 -0.102∗∗ -0.080

( 0.036 ) ( 0.063 ) ( 0.041 ) ( 0.066 )

TOU Peak Price in Effect * heating

degree hours 2-7pm

-0.002 0.003 -0.001 -0.039∗∗

( 0.002 ) ( 0.005 ) ( 0.006 ) ( 0.016 )

TOU Pk. Price in Effect * heating deg.

hrs 2-7pm squared (1000’s)

. . -0.020 0.869∗

. . ( 0.123 ) ( 0.453 )

TOU Peak Price in Effect * cooling degree

hrs 2-7PM, previous day

. . -0.001∗ -0.00092

. . ( 0.00066 ) ( 0.001 )

TOU Pk Price in Effect * cooling degree

hrs 2-7PM, two days before

. . 0.00048 -0.001

. . ( 0.00051 ) ( 0.00090 )

TOU Pk Price in Effect * cooling deg hrs

2-7PM, three days before

. . -0.00074 -0.002∗∗

. . ( 0.00051 ) ( 0.00087 )

TOU Peak Price in Effect * central AC . . 0.015 -0.073

. . ( 0.084 ) ( 0.178 )

TOU Peak Price in Effect * room AC
. . -0.048 -0.046
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

. . ( 0.118 ) ( 0.251 )

TOU Peak Price in Effect * number of

bedrooms

. . 0.092∗∗ -0.024

. . ( 0.039 ) ( 0.090 )

TOU Peak Price in Effect * # people

in the household

. . 0.005 0.191∗∗∗

. . ( 0.044 ) ( 0.066 )

TOU Peak Price in Effect * work from

home 11-30 hrs/wk

. . 0.191∗ -0.273

. . ( 0.109 ) ( 0.204 )

TOU Peak Price in Effect * work from

home >30 hrs/wk

. . -0.646∗∗∗ -0.020

. . ( 0.205 ) ( 0.319 )

TOU Peak Price in Effect * swimming

pool

. . -0.105 -0.224

. . ( 0.148 ) ( 0.232 )

TOU Peak Price in Effect * spa
. . 0.396∗∗∗ -0.207

. . ( 0.150 ) ( 0.229 )

TOU Pk Price in Effect * cooling degree

hours 2-7pm * room AC

. . 0.011∗∗∗ 0.001

. . ( 0.003 ) ( 0.006 )

TOU Pk Price in Effect * heating deg. hrs

2-7PM * elec. heat

. . 0.010∗∗∗ 0.006

. . ( 0.003 ) ( 0.006 )

TOU Peak Price in Effect * electric

heat

. . -0.202∗ -0.254

. . ( 0.104 ) ( 0.279 )

TOU Peak Price in Effect * # kids

under 5 in household

. . -0.081 -0.156

. . ( 0.092 ) ( 0.118 )

TOU Peak Price in Effect * # kids

over 5 in household

. . -0.023 -0.152∗

. . ( 0.060 ) ( 0.087 )

TOU Peak Price in Effect * # people

over 65 in household

. . -0.023 -0.319∗∗∗

. . ( 0.062 ) ( 0.116 )

TOU Peak Price in Effect * work from

home 0-10 hrs/wk

. . -0.084 0.451

. . ( 0.104 ) ( 0.291 )

TOU Peak Price in Effect * electric

cooktop

. . 0.190 0.245
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

. . ( 0.134 ) ( 0.267 )

TOU Peak Price in Effect * electric

oven

. . -0.149 -0.112

. . ( 0.125 ) ( 0.243 )

TOU Peak Price in Effect * # of

refrigerators and freezers

. . -0.228∗∗ -0.031

. . ( 0.101 ) ( 0.121 )

TOU Peak Price in Effect * customer

in expt. < 4.5 months

. . -0.136 0.764∗

. . ( 0.115 ) ( 0.424 )

TOU Peak Price in Effect * customer

stayed in expt. throughout expt.

. . -0.213∗∗ -0.277

. . ( 0.086 ) ( 0.254 )

Critical Price in Effect
0.017 0.478 0.447∗ 0.984

( 0.129 ) ( 0.306 ) ( 0.266 ) ( 0.756 )

Critical Price in Effect * day before

critical price

0.075∗∗∗ 0.087 0.039 0.076

( 0.026 ) ( 0.061 ) ( 0.037 ) ( 0.071 )

Critical Price in Effect * day after

critical price

0.047∗ 0.061 -0.004 0.056

( 0.027 ) ( 0.055 ) ( 0.036 ) ( 0.061 )

Crit. Price in Effect * elec. use, kWh /

day, summer ‘02

-0.014 -0.018 -0.015 -0.020

( 0.010 ) ( 0.013 ) ( 0.013 ) ( 0.015 )

Critical Price in Effect * high ratio

rate customer.

0.244 0.276 0.263∗∗ -0.283

( 0.157 ) ( 0.195 ) ( 0.118 ) ( 0.236 )

Critical Price in Effect * apartment
-0.025 . 0.088 .

( 0.091 ) . ( 0.153 ) .

Critical Price in Effect * climate zone

2

0.089 -0.350∗ 0.004 -0.003

( 0.066 ) ( 0.184 ) ( 0.116 ) ( 0.349 )

Critical Price in Effect * climate zone

3

-0.094 -0.108 -0.134 0.596

( 0.118 ) ( 0.274 ) ( 0.167 ) ( 0.408 )

Critical Price in Effect * climate zone

4

0.006 -0.635 0.003 0.900

( 0.208 ) ( 0.386 ) ( 0.247 ) ( 0.553 )

Critical Price in Effect * cooling degree

hours 2-7pm

0.008∗ 0.011 0.007 0.009
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.004 ) ( 0.007 ) ( 0.005 ) ( 0.008 )

Crit. Price in Effect * cooling degree

hours squared 1000’s, 2-7pm

-0.106∗∗ -0.100 -0.102∗∗ -0.077

( 0.044 ) ( 0.071 ) ( 0.050 ) ( 0.078 )

Critical Price in Effect * heating

degree hours 2-7pm

0.006 -0.006 -0.036∗ -0.017

( 0.006 ) ( 0.011 ) ( 0.018 ) ( 0.045 )

Crit. Price in Effect * heating degree

hours 2-7pm squared 1000’s

. . 1.572∗∗∗ -0.027

. . ( 0.608 ) ( 1.752 )

Critical Price in Effect * cooling degree

hours 2-7PM, previous day

. . -0.002 -0.004

. . ( 0.001 ) ( 0.003 )

Crit. Price in Effect * cooling degree

hours 2-7PM, two days before

. . 0.002 -0.000070

. . ( 0.001 ) ( 0.003 )

Crit. Price in Effect * cooling degree

hours 2-7PM, three days before

. . -0.001 -0.002

. . ( 0.001 ) ( 0.002 )

Critical Price in Effect * central AC
. . -0.120 -0.668∗∗

. . ( 0.128 ) ( 0.269 )

Critical Price in Effect * room AC
. . -0.173 0.052

. . ( 0.164 ) ( 0.369 )

Critical Price in Effect * number of

bedrooms

. . 0.050 -0.077

. . ( 0.057 ) ( 0.120 )

Critical Price in Effect * # people in

the household

. . 0.055 0.184∗∗

. . ( 0.051 ) ( 0.094 )

Critical Price in Effect * work from

home 11-30 hrs/wk

. . 0.386∗ -0.473

. . ( 0.229 ) ( 0.314 )

Critical Price in Effect * work from

home >30 hrs/wk

. . -0.137 0.168

. . ( 0.293 ) ( 0.385 )

Critical Price in Effect * swimming

pool

. . -0.269 -0.195

. . ( 0.269 ) ( 0.284 )

Critical Price in Effect * spa
. . 0.652∗∗ -0.313
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

. . ( 0.266 ) ( 0.302 )

Critical Price in Effect * cooling degree

hours 2-7pm * room AC

. . 0.010∗∗∗ 0.005

. . ( 0.003 ) ( 0.007 )

Critical Price in Effect * heating

degree hours 2-7PM* electric heat

. . 0.056∗∗ -0.006

. . ( 0.027 ) ( 0.044 )

Critical Price in Effect * electric heat
. . -0.347∗∗ 0.037

. . ( 0.164 ) ( 0.328 )

Critical Price in Effect * # kids under

5 in household

. . -0.189∗ -0.309∗

. . ( 0.111 ) ( 0.168 )

Critical Price in Effect * # kids over 5

in household

. . -0.009 -0.166

. . ( 0.073 ) ( 0.125 )

Critical Price in Effect * # people over

65 in household

. . -0.107 -0.552∗∗∗

. . ( 0.094 ) ( 0.166 )

Critical Price in Effect * work from

home 0-10 hrs/wk

. . -0.162 0.637∗

. . ( 0.169 ) ( 0.384 )

Critical Price in Effect * electric

cooktop

. . 0.317 0.244

. . ( 0.213 ) ( 0.377 )

Critical Price in Effect * electric oven
. . -0.131 -0.247

. . ( 0.193 ) ( 0.326 )

Critical Price in Effect * number of

refrigerators and freezers

. . -0.340∗∗ -0.190

. . ( 0.133 ) ( 0.160 )

Critical Price in Effect * customer

stayed in expt. < 4.5 months

. . 0.036 0.857

. . ( 0.155 ) ( 0.546 )

Critical Price in Effect * customer

stayed in expt. throughout expt.

. . -0.311∗∗ -0.728∗

. . ( 0.121 ) ( 0.395 )

Treatment Customer
-0.038 -0.247 . .

( 0.085 ) ( 0.257 ) . .

Treatment Customer * electricity use,

kWh / day, summer 2002

0.00073 0.005 . .
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.007 ) ( 0.009 ) . .

Treatment Customer * apartment
0.074 . . .

( 0.056 ) . . .

Treatment Customer * climate zone 2
0.012 0.048 . .

( 0.051 ) ( 0.166 ) . .

Treatment Customer * climate zone 3
0.085 -0.055 . .

( 0.066 ) ( 0.225 ) . .

Treatment Customer * climate zone 4
0.029 0.640∗ . .

( 0.182 ) ( 0.340 ) . .

Treatment Customer * cooling degree

hours 2-7pm

-0.010∗∗ -0.017∗∗ -0.008 -0.019∗∗

( 0.005 ) ( 0.007 ) ( 0.006 ) ( 0.008 )

Trt. Customer * cooling degree hours

squared (1000’s), 2-7pm

0.093∗∗ 0.102 0.081∗ 0.105

( 0.040 ) ( 0.069 ) ( 0.044 ) ( 0.069 )

Treatment Customer * heating degree

hours 2-7pm

0.00039 -0.002 -0.003 0.038∗∗

( 0.002 ) ( 0.005 ) ( 0.005 ) ( 0.016 )

Trt. Cust. * heating degree hours 2-7pm

squared (1000’s)

. . 0.005 -0.873∗

. . ( 0.122 ) ( 0.454 )

Treatment Period (after 7/1/2003)
-0.007 -0.198 -0.255∗ -0.053

( 0.058 ) ( 0.182 ) ( 0.136 ) ( 0.407 )

Treatment Period * electricity use,

kWh / day, summer 2002

0.005 0.009 0.009 0.004

( 0.005 ) ( 0.007 ) ( 0.007 ) ( 0.007 )

Treatment Period * apartment
0.035 . -0.015 .

( 0.043 ) . ( 0.072 ) .

Treatment Period * climate zone 2
-0.065 0.254∗∗∗ -0.026 0.195

( 0.043 ) ( 0.094 ) ( 0.062 ) ( 0.182 )

Treatment Period * climate zone 3
0.074 0.022 0.052 -0.142

( 0.055 ) ( 0.136 ) ( 0.079 ) ( 0.205 )

Treatment Period * climate zone 4
-0.079 0.360∗ -0.396∗∗ 0.049
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.125 ) ( 0.189 ) ( 0.170 ) ( 0.317 )

Treatment Period * cooling degree

hours 2-7pm

0.001 -0.007 0.002 -0.008

( 0.003 ) ( 0.005 ) ( 0.005 ) ( 0.006 )

Treatment Period * cooling degree

hours squared (1000’s), 2-7pm

-0.007 0.052 -0.017 0.018

( 0.031 ) ( 0.052 ) ( 0.038 ) ( 0.055 )

Treatment Period * heating degree

hours 2-7pm

-0.001 -0.004 0.007 0.021

( 0.003 ) ( 0.007 ) ( 0.006 ) ( 0.021 )

Trt. Pd. * heating degree hours 2-7pm

squared (1000’s)

. . -0.031 0.315

. . ( 0.161 ) ( 0.816 )

Treatment Period * cooling degree

hours 2-7PM, previous day

. . 0.002∗∗∗ 0.005∗∗∗

. . ( 0.00050 ) ( 0.001 )

Treatment Period * cooling degree

hours 2-7PM, two days before

. . 0.00061 0.002∗∗∗

. . ( 0.00047 ) ( 0.00074 )

Treatment Period * cooling degree

hours 2-7PM, three days before

. . 0.00062 0.002∗∗∗

. . ( 0.00038 ) ( 0.00065 )

Treatment Period * central AC
. . 0.125∗∗ 0.134

. . ( 0.060 ) ( 0.150 )

Treatment Period * room AC
. . -0.022 -0.099

. . ( 0.096 ) ( 0.177 )

Treatment Period * number of

bedrooms

. . -0.058∗∗ 0.007

. . ( 0.028 ) ( 0.074 )

Treatment Period * # people in the

household

. . -0.011 -0.107∗∗

. . ( 0.032 ) ( 0.049 )

Treatment Period * work from home

11-30 hrs/wk

. . -0.157∗∗∗ 0.222

. . ( 0.056 ) ( 0.177 )

Treatment Period * work from home

>30 hrs/wk

. . 0.616∗∗∗ -0.137

. . ( 0.175 ) ( 0.181 )

Treatment Period * swimming pool
. . 0.144 0.099
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

. . ( 0.112 ) ( 0.187 )

Treatment Period * spa
. . -0.311∗∗∗ 0.145

. . ( 0.099 ) ( 0.194 )

Treatment Period * cooling degree

hours 2-7pm * room AC

. . -0.007∗∗∗ -0.00017

. . ( 0.002 ) ( 0.004 )

Treatment Period * heating degree

hours 2-7PM* electric heat

. . -0.008∗∗∗ -0.001

. . ( 0.002 ) ( 0.004 )

Treatment Period * electric heat
. . 0.196∗∗ 0.031

. . ( 0.078 ) ( 0.152 )

Treatment Period * # kids under 5 in

household

. . 0.124∗ 0.134

. . ( 0.068 ) ( 0.088 )

Treatment Period * # kids over 5 in

household

. . 0.070∗ 0.092

. . ( 0.038 ) ( 0.063 )

Treatment Period * # people over 65

in household

. . 0.124∗∗ 0.303∗∗∗

. . ( 0.051 ) ( 0.079 )

Treatment Period * work from home

0-10 hrs/wk

. . 0.177∗∗ -0.147

. . ( 0.070 ) ( 0.189 )

Treatment Period * electric cooktop
. . -0.057 -0.356∗

. . ( 0.108 ) ( 0.209 )

Treatment Period * electric oven
. . -0.094 0.050

. . ( 0.098 ) ( 0.178 )

Treatment Period * number of

refrigerators and freezers

. . 0.092 -0.043

. . ( 0.065 ) ( 0.092 )

Treatment Period * customer stayed in

expt. < 4.5 months

. . 0.027 -0.439

. . ( 0.094 ) ( 0.310 )

Treatment Period * customer stayed in

expt. throughout expt.

. . 0.124∗ 0.437∗∗

. . ( 0.068 ) ( 0.204 )

Critical Period
-0.192∗∗∗ -0.396∗∗∗ -0.068 -1.280∗∗∗
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.056 ) ( 0.128 ) ( 0.123 ) ( 0.393 )

Critical Period * electricity use, kWh /

day, summer 2002

0.017∗∗∗ 0.014∗∗∗ 0.022∗∗∗ 0.016∗∗∗

( 0.004 ) ( 0.005 ) ( 0.007 ) ( 0.004 )

Critical Period * high ratio rate

customer.

-0.154 -0.478∗∗∗ -0.109 0.248

( 0.137 ) ( 0.154 ) ( 0.075 ) ( 0.198 )

Critical Period * apartment
0.005 . 0.012 .

( 0.041 ) . ( 0.086 ) .

Critical Period * climate zone 2
0.010 0.154∗ 0.003 -0.018

( 0.028 ) ( 0.091 ) ( 0.057 ) ( 0.163 )

Critical Period * climate zone 3
0.200∗∗∗ 0.273∗∗ 0.101 -0.317∗

( 0.059 ) ( 0.136 ) ( 0.084 ) ( 0.184 )

Critical Period * climate zone 4
0.176∗ 0.280 0.061 -0.481∗∗

( 0.106 ) ( 0.183 ) ( 0.143 ) ( 0.237 )

Critical Period * cooling degree hours

2-7pm

-0.002 -0.002 -0.003∗∗ -0.004

( 0.001 ) ( 0.003 ) ( 0.002 ) ( 0.003 )

Critical Period * cooling degree hours

squared (1000’s), 2-7pm

-0.007 -0.009 0.00099 0.015

( 0.014 ) ( 0.023 ) ( 0.015 ) ( 0.028 )

Critical Period * heating degree hours

2-7pm

-0.002 0.002 0.012 0.024

( 0.004 ) ( 0.007 ) ( 0.013 ) ( 0.029 )

Critical Period * heating degree hours

2-7pm squared (1000’s)

. . -0.583 -0.935

. . ( 0.440 ) ( 1.120 )

Critical Period * cooling degree hours

2-7PM, previous day

. . -0.002∗ -0.00019

. . ( 0.001 ) ( 0.002 )

Critical Period * cooling degree hours

2-7PM, two days before

. . -0.00048 -0.00053

. . ( 0.001 ) ( 0.003 )

Critical Period * cooling degree hours

2-7PM, three days before

. . 0.002∗ 0.001

. . ( 0.001 ) ( 0.002 )

Critical Period * central AC
. . 0.207∗∗∗ 0.648∗∗∗



www.manaraa.com

253

Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

. . ( 0.066 ) ( 0.122 )

Critical Period * room AC
. . 0.133 0.128

. . ( 0.109 ) ( 0.149 )

Critical Period * number of bedrooms
. . -0.00025 0.062

. . ( 0.036 ) ( 0.056 )

Critical Period * # people in the

household

. . -0.030 0.036

. . ( 0.019 ) ( 0.040 )

Critical Period * work from home

11-30 hrs/wk

. . 0.034 0.195

. . ( 0.131 ) ( 0.159 )

Critical Period * work from home >30

hrs/wk

. . -0.371∗∗ 0.060

. . ( 0.162 ) ( 0.116 )

Critical Period * swimming pool
. . 0.193 -0.031

. . ( 0.214 ) ( 0.097 )

Critical Period * spa
. . -0.137 -0.020

. . ( 0.106 ) ( 0.119 )

Critical Period * cooling degree hours

2-7pm * room AC

. . -0.000063 -0.002

. . ( 0.002 ) ( 0.003 )

Critical Period * heating degree hours

2-7PM* electric heat

. . -0.00010 .

. . ( 0.010 ) .

Critical Period * electric heat
. . -0.046 -0.148

. . ( 0.087 ) ( 0.102 )

Critical Period * # kids under 5 in

household

. . 0.042 0.046

. . ( 0.050 ) ( 0.077 )

Critical Period * # kids over 5 in

household

. . -0.020 -0.028

. . ( 0.025 ) ( 0.062 )

Critical Period * # people over 65 in

household

. . 0.120∗ 0.149∗

. . ( 0.064 ) ( 0.082 )

Critical Period * work from home 0-10

hrs/wk

. . 0.052 -0.110
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

. . ( 0.078 ) ( 0.119 )

Critical Period * electric cooktop
. . -0.036 -0.158

. . ( 0.086 ) ( 0.167 )

Critical Period * electric oven
. . -0.031 0.108

. . ( 0.074 ) ( 0.136 )

Critical Period * number of

refrigerators and freezers

. . 0.007 0.024

. . ( 0.062 ) ( 0.059 )

Critical Period * customer stayed in

expt. < 4.5 months

. . -0.226∗∗ -0.141

. . ( 0.098 ) ( 0.316 )

Critical Period * customer stayed in

expt. throughout expt.

. . 0.093 0.430∗∗

. . ( 0.063 ) ( 0.195 )

electricity use, kWh / day, summer

2002

0.045∗∗∗ 0.042∗∗∗ . .

( 0.005 ) ( 0.008 ) . .

trt. customer on high-ratio rate
-0.044 0.058 . .

( 0.036 ) ( 0.086 ) . .

apartment
-0.044 . . .

( 0.043 ) . . .

climate zone 2
0.029 -0.010 . .

( 0.035 ) ( 0.151 ) . .

climate zone 3
0.015 0.125 . .

( 0.043 ) ( 0.194 ) . .

climate zone 4
-0.028 -0.354 . .

( 0.158 ) ( 0.272 ) . .

cooling degree hours 2-7PM, base 78
0.012∗∗∗ 0.029∗∗∗ 0.010∗ 0.034∗∗∗

( 0.004 ) ( 0.006 ) ( 0.005 ) ( 0.006 )

heating degree hours 2-7pm
0.007∗∗ 0.005 0.002 -0.041∗∗∗

( 0.003 ) ( 0.007 ) ( 0.005 ) ( 0.015 )

Tuesday
-0.009 -0.002 -0.003 -0.010
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.007 ) ( 0.014 ) ( 0.010 ) ( 0.017 )

Wednesday
-0.006 -0.006 -0.003 -0.018

( 0.006 ) ( 0.016 ) ( 0.009 ) ( 0.020 )

Thursday
-0.012 -0.038∗∗ -0.002 -0.033∗

( 0.009 ) ( 0.016 ) ( 0.012 ) ( 0.019 )

Friday
-0.002 -0.003 0.004 -0.012

( 0.009 ) ( 0.021 ) ( 0.011 ) ( 0.026 )

year 2004
-0.013 -0.088 0.013 0.002

( 0.025 ) ( 0.057 ) ( 0.037 ) ( 0.058 )

June
0.038∗∗∗ 0.167∗∗∗ 0.022 0.085∗∗

( 0.013 ) ( 0.032 ) ( 0.018 ) ( 0.038 )

July
0.072∗∗∗ 0.338∗∗∗ 0.065∗∗∗ 0.262∗∗∗

( 0.018 ) ( 0.051 ) ( 0.024 ) ( 0.050 )

August
0.090∗∗∗ 0.389∗∗∗ 0.073∗∗∗ 0.314∗∗∗

( 0.020 ) ( 0.060 ) ( 0.027 ) ( 0.063 )

September
0.074∗∗∗ 0.172∗∗∗ 0.058∗∗ 0.126∗∗∗

( 0.018 ) ( 0.043 ) ( 0.025 ) ( 0.045 )

October
0.040 0.007 0.039 0.044

( 0.025 ) ( 0.066 ) ( 0.035 ) ( 0.073 )

heating degree hours 2-7pm squared

(1000’s)

-0.172∗∗∗ 0.001 . .

( 0.066 ) ( 0.149 ) . .

Tue * cooling degree hours 2-7pm
-0.00050 -0.002 -0.001 -0.002

( 0.00070 ) ( 0.001 ) ( 0.00085 ) ( 0.001 )

Tue * cooling degree hours 2-7pm

squared (1000’s)

-0.003 0.013 0.003 0.011

( 0.007 ) ( 0.012 ) ( 0.009 ) ( 0.012 )

Tue * heating degree hours 2-7pm
0.00072 -0.006 0.00052 -0.007

( 0.001 ) ( 0.004 ) ( 0.001 ) ( 0.006 )

Tue * heating degree hours 2-7pm

squared (1000’s)

0.012 0.110∗ 0.006 -0.016
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.023 ) ( 0.060 ) ( 0.022 ) ( 0.245 )

Wed * cooling degree hours 2-7pm
-0.00069 -0.004∗∗∗ -0.00097 -0.003∗∗

( 0.00071 ) ( 0.001 ) ( 0.00095 ) ( 0.001 )

Wed * cooling degree hours 2-7pm

squared (1000’s)

0.003 0.045∗∗∗ 0.004 0.029∗∗

( 0.007 ) ( 0.015 ) ( 0.010 ) ( 0.015 )

Wed * heating degree hours 2-7pm
0.00071 0.004 0.00087 0.007

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.008 )

Wed * heating degree hours 2-7pm

squared (1000’s)

0.006 -0.041 -0.004 -0.348

( 0.030 ) ( 0.081 ) ( 0.027 ) ( 0.296 )

Thu * cooling degree hours 2-7pm
-0.00071 -0.002∗ -0.001 -0.001

( 0.00079 ) ( 0.001 ) ( 0.00090 ) ( 0.001 )

Thu * cooling degree hours 2-7pm

squared (1000’s)

0.001 0.025∗ 0.005 0.015

( 0.008 ) ( 0.014 ) ( 0.010 ) ( 0.012 )

Thu * heating degree hours 2-7pm
-0.001 -0.006 -0.001 -0.002

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.008 )

Thu * heating degree hours 2-7pm

squared (1000’s)

0.047 0.179∗∗ 0.040 -0.067

( 0.036 ) ( 0.081 ) ( 0.032 ) ( 0.275 )

Fri * cooling degree hours 2-7pm
-0.002∗ -0.004∗∗ -0.001 -0.00098

( 0.00085 ) ( 0.001 ) ( 0.001 ) ( 0.002 )

Fri * cooling degree hours 2-7pm

squared (1000’s)

0.010 0.027∗ 0.007 0.004

( 0.008 ) ( 0.015 ) ( 0.011 ) ( 0.017 )

Fri * heating degree hours 2-7pm
-0.004∗∗ -0.009∗∗ -0.004∗ -0.006

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.008 )

Fri * heating degree hours 2-7pm

squared (1000’s)

0.085∗∗ 0.143∗ 0.072∗∗ -0.039

( 0.034 ) ( 0.083 ) ( 0.033 ) ( 0.255 )

year 2004 * cooling degree hours

2-7pm

-0.005∗∗∗ -0.003 -0.004∗∗ -0.004

( 0.002 ) ( 0.003 ) ( 0.002 ) ( 0.004 )

year 2004 * cooling degree hours

2-7pm squared (1000’s)

0.049∗∗∗ 0.028 0.040∗∗ 0.032
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.015 ) ( 0.036 ) ( 0.016 ) ( 0.039 )

year 2004 * heating degree hours

2-7pm

-0.00084 0.012∗ -0.001 0.024

( 0.002 ) ( 0.007 ) ( 0.005 ) ( 0.016 )

year 2004 * heating degree hours

2-7pm squared (1000’s)

0.063 -0.211 -0.004 -0.950∗

( 0.054 ) ( 0.143 ) ( 0.143 ) ( 0.497 )

June * cooling degree hours 2-7pm
-0.00088 -0.004 0.002 0.001

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.003 )

June * cooling degree hours 2-7pm

squared (1000’s)

0.010 0.041 -0.029 0.017

( 0.030 ) ( 0.051 ) ( 0.027 ) ( 0.040 )

June * heating degree hours 2-7pm
-0.003 -0.005 -0.002 -0.003

( 0.002 ) ( 0.005 ) ( 0.002 ) ( 0.010 )

June * heating degree hours 2-7pm

squared (1000’s)

0.064∗∗ 0.021 0.049 0.338

( 0.030 ) ( 0.076 ) ( 0.035 ) ( 0.449 )

July * cooling degree hours 2-7pm
-0.001 -0.00038 -0.001 -0.00043

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.004 )

July * cooling degree hours 2-7pm

squared (1000’s)

0.021 0.009 0.005 0.032

( 0.022 ) ( 0.043 ) ( 0.025 ) ( 0.043 )

July * heating degree hours 2-7pm
-0.009∗∗∗ -0.035∗∗∗ -0.010∗∗∗ -0.018

( 0.003 ) ( 0.011 ) ( 0.003 ) ( 0.011 )

July * heating degree hours 2-7pm

squared (1000’s)

0.225∗∗ 1.027∗∗∗ 0.212∗∗ 0.357

( 0.110 ) ( 0.363 ) ( 0.105 ) ( 0.397 )

Aug * cooling degree hours 2-7pm
-0.002 -0.002 -0.002 -0.001

( 0.002 ) ( 0.004 ) ( 0.002 ) ( 0.004 )

Aug * cooling degree hours 2-7pm

squared (1000’s)

0.027 0.011 0.009 0.020

( 0.021 ) ( 0.039 ) ( 0.026 ) ( 0.036 )

Aug * heating degree hours 2-7pm
-0.019∗∗ -0.066∗∗∗ -0.011 -0.053∗∗

( 0.008 ) ( 0.023 ) ( 0.007 ) ( 0.022 )

Aug * heating degree hours 2-7pm

squared (1000’s)

0.525 2.078∗∗ 0.230 1.918∗
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers

( 0.368 ) ( 0.932 ) ( 0.261 ) ( 0.993 )

Sept * cooling degree hours 2-7pm
-0.006∗∗∗ -0.005 -0.005∗∗ -0.005∗

( 0.002 ) ( 0.003 ) ( 0.002 ) ( 0.003 )

Sept * cooling degree hours 2-7pm

squared (1000’s)

0.055∗∗∗ 0.033 0.032 0.046

( 0.019 ) ( 0.034 ) ( 0.023 ) ( 0.032 )

Sept * heating degree hours 2-7pm
-0.004∗ 0.002 -0.002 0.019

( 0.002 ) ( 0.006 ) ( 0.002 ) ( 0.016 )

Sept * heating degree hours 2-7pm

squared (1000’s)

0.065∗∗ -0.095 0.037 -0.733

( 0.029 ) ( 0.083 ) ( 0.028 ) ( 0.578 )

Oct * cooling degree hours 2-7pm
-0.012∗∗∗ -0.018∗∗∗ -0.009∗∗∗ -0.016∗∗∗

( 0.003 ) ( 0.004 ) ( 0.003 ) ( 0.004 )

Oct * cooling degree hours 2-7pm

squared (1000’s)

0.101∗∗∗ 0.123∗∗ 0.049 0.097∗∗

( 0.028 ) ( 0.050 ) ( 0.031 ) ( 0.046 )

Oct * heating degree hours 2-7pm
-0.002 0.010 -0.002 0.026

( 0.003 ) ( 0.007 ) ( 0.005 ) ( 0.018 )

Oct * heating degree hours 2-7pm

squared (1000’s)

0.089∗ -0.173 0.012 -1.051∗

( 0.053 ) ( 0.142 ) ( 0.139 ) ( 0.569 )

cooling degree hours squared (1000’s),

2-7pm

-0.034 -0.086 0.001 .

( 0.035 ) ( 0.069 ) ( 0.043 ) .

heating degree hours 2-7pm squared,

1000’s

. . -0.035 0.825

. . ( 0.104 ) ( 0.555 )

constant
-0.082 -0.213 0.469∗∗∗ 1.219∗∗∗

( 0.061 ) ( 0.224 ) ( 0.030 ) ( 0.061 )

N 66832 54576 39483 38177

R-squared 0.3459 0.4228 0.5411 0.5993

Robust standard errors, clustered by customer in parentheses.

Significance: *=10% ** =5% ***=1%

Cooling degree hours are base 78o F. Heating degree hours are base 65o F.
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Specification 1: Simplest

Diff in Diff

Specification 4: Adds

person FE’s; controls

Low Use /

Apt. Cus-

tomers

High Use

Customers

Low Use /

Apt. Cus-

tomers

High Use

Customers
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Appendix G

Methodology used to Calculate

Population Weighted Temperatures

This section describes the methodology used to calculate the population weighted

temperatures that I use in Section 2.5.

The population numbers reported here come from Charles River Associates (d,

18-19).

Despite the fact that “each ... customer in the experiment was assigned by the rele-

vant utility to a specific weather station located in close proximity to the customer”(Charles

River Associates, d, 18), California is known for its micro climates. Thus, slightly more than

half of the 58 weather stations in the sample contain customers from more than one climate

zone. For example, customers to the north of the Oakland weather station are in climate

zone 1, while customers to the south and east of it are in climate zone 2. More disturbingly,

a handful of climate zone 1 customers in the mountains above desert weather stations are

assigned to those stations. I emulate the SPP’s methodology that: “When a weather station

was included in more than one climate zone, the distribution of control group customers in

the experiment assigned to that weather station was used to allocate the station population

to each climate zone” (Charles River Associates, d, 18).

Specifically, I begin with the whole sample of control group customers that the

utilities considered recruiting, as documented in the SPP Database “Table 5.”

Each utility appears to have set a target number of customer candidates for each
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climate-zone-by-customer-type “slot” in the experiment.1 The database includes idiosyn-

cratic numbers of additional candidates, perhaps added to deal with recruiting problems.

There is reason to fear that these idiosyncrasies may be correlated with customer charac-

teristics, like difficulty installing advanced meters in certain kinds of multifamily buildings.

Thus, I drop the idiosyncratic customers and obtain 2 candidate control customers per slot

in SCE, 4 in SDG&E, and 24 in PG&E. Each weather station covers just one utility, so this

approach yields the most statistical power possible given the design. Estimates for PG&E

may, however, be considerably more reliable than those for the other two utilities.

Charles River Associates (d, 18-19) contains the population data used here, but

is missing an entry for SDG&E weather station S10. Disturbingly, attempts to back out

the population of this station using statewide population numbers reveal that the popu-

lation by weather station table reports a slightly larger population than does population

sampling table at Charles River Associates (d, 22). The distributions of the populations

as reconstructed here are, however, qualitatively quite similar.

I calculated the percentage of customers in each zone for each weather station as

follows: Let PctPopa,z be the percentage of the statewide population of accounts that is of

account type a ∈ {apartments, low use single family, high use single family} and in climate

zone z. The PctPopa,z values came from the statewide weights spreadsheet. Let PctSlotsa,z

be the percentage of the total experimental slots assigned to account type a in zone z.

Then, I calculated a weight, ωa,z representing the ratio between the number of slots

who would have come from that zone and account type had the sample been representative

of the population and the number of actual slots assigned:

ωa,z =
PctPopa,z

PctSlotsa,z

Then I constructed the weighted count of people Cz,s in each zone for weather

station s, Na,z,s within each weather station by weighting and adding up the number of

people of each type in that zone:

Cz,s =
∑
a

ωa,zNa,z,s

1The utilities had clear recruitment targets documented at Charles River Associates (d, 22). For example,
the sample design called for PG&E to recruit 17 low-use, single family control customers for climate zone 1.
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I could use this to assign the station’s population to climate zones where Popz,s is

the population that lives in zone z closest to station s and TotalPops is the total population

closest to station s:

Popz,s = TotalPops
Cz,s∑
z Cz,s
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Appendix H

Distribution of Cooling Degree

Hours by Climate Zone

Distribution of 2-7 PM Base-78 Cooling Degree Hours by Climate Zone

ordinary days minimum 25% median 75% 90% 95% 98% max

zone 1 0.0 0.4 2.2 4.0 8.5 18.7 43.6 59.5

zone 2 0.0 1.0 3.7 12.5 20.8 27.7 41.9 49.0

zone 3 0.0 9.4 25.0 42.5 56.9 62.1 70.2 85.4

zone 4 0.0 32.8 60.2 88.9 103.9 112.1 119.5 126.6

statewide 0.0 8.8 16.9 27.6 36.7 41.9 54.8 64.0

critical days minimum 25% median 75% 90% 95% 98% max

zone 1 0.0 3.8 4.8 22.2 37.9 38.7 41.6 41.6

zone 2 0.3 9.3 13.8 28.7 37.0 38.0 40.5 40.5

zone 3 2.7 41.6 50.6 61.5 68.9 71.1 75.0 75.0

zone 4 27.8 58.5 103.0 114.0 117.7 123.9 124.7 124.7

statewide 5.6 29.0 36.5 44.5 52.6 54.2 57.3 57.3
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Appendix I

Main Impacts Tables for Other

Regression Specifications

Impacts of Critical Prices on avg. customer demand, kW

specification 1 Simplest Diff in Diff

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide

0-40 0.128 -0.012 -0.053 0.00020 -0.033

40-60 0.219∗ 0.090 0.026 -0.029 0.047

60-80 0.181 0.016 -0.013 -0.276∗ -0.031

80-90 0.168 0.011 -0.042 -0.350∗∗ -0.051

90-95 0.148 0.003 -0.041 -0.473∗∗ -0.070

95-99 0.125 0.051 -0.068 -0.500∗∗ -0.063

99-99.99999 0.212∗∗ 0.092 -0.034 -0.384∗∗ -0.010

max load 0.282∗∗ 0.052 -0.095 -0.408∗∗ -0.042

maximum statewide CDH2 0.250∗ -0.002 -0.148 -0.461∗∗ -0.093

max zone-by-zone CDH2 -0.018 -0.133 -0.185 -0.720∗∗ -0.141
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Impacts of Critical Prices on avg. customer demand, kW

Specification 2: Adding Survey Variables

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide

0-40 0.186 -0.013 -0.071 -0.027 -0.036

40-60 0.251∗ 0.065 0.008 -0.030 0.033

60-80 0.230 0.016 -0.020 -0.157 -0.014

80-90 0.221 0.014 -0.025 -0.181 -0.020

90-95 0.205 0.008 -0.028 -0.257 -0.034

95-99 0.188 0.039 -0.032 -0.258 -0.024

99-99.99999 0.254∗∗ 0.076 -0.012 -0.199 0.014

max load 0.309∗∗ 0.058 -0.044 -0.209 0.001

maximum statewide CDH2 0.288∗ 0.023 -0.079 -0.238 -0.031

max zone-by-zone CDH2 0.135 -0.053 -0.093 -0.379 -0.055

Impacts of Critical Prices on avg. customer demand, kW

Specification 3: Adding CAC*CDH interactions

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide

0-40 0.131 -0.051 -0.052 -0.013 -0.039

40-60 0.189 0.013 -0.008 -0.038 0.008

60-80 0.162 -0.036 -0.033 -0.211 -0.044

80-90 0.154 -0.040 -0.056 -0.268 -0.060

90-95 0.142 -0.045 -0.055 -0.350 -0.072

95-99 0.128 -0.013 -0.077 -0.372 -0.069

99-99.99999 0.182 0.011 -0.054 -0.291 -0.035

max load 0.225 -0.018 -0.097 -0.308 -0.059

maximum statewide CDH2 0.204 -0.054 -0.131 -0.345 -0.092

max zone-by-zone CDH2 0.021 -0.143 -0.159 -0.524 -0.126
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Impacts of TOU Peak Prices on avg. customer demand, kW

specification 1 Simplest Diff in Diff

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide

0-40 0.010 -0.041 -0.006 -0.011 -0.031

40-60 0.028 -0.014 0.061 -0.036 0.003

60-80 0.016 -0.021 0.057 -0.142 -0.014

80-90 0.004 0.013 0.057 -0.227 -0.010

90-95 0.016 -0.003 0.053 -0.247∗ -0.019

95-99 0.018 0.044 0.086 -0.224 0.016

99-99.99999 0.167∗ 0.066 0.012 -0.238 0.018

max load 0.167∗ 0.066 0.012 -0.238 0.018

maximum statewide CDH2 0.073 -0.064 -0.029 -0.367∗ -0.078

max zone-by-zone CDH2 0.073 -0.064 0.020 -0.533∗∗ -0.003

Impacts of TOU Peak Prices on avg. customer demand, kW

Specification 2: Adding Survey Variables

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide

0-40 -0.017 -0.063 -0.011 0.013 -0.037

40-60 0.00038 -0.037 0.058 0.022 -0.00045

60-80 -0.007 -0.039 0.062 -0.050 -0.008

80-90 -0.019 -0.011 0.078 -0.102 0.002

90-95 -0.009 -0.024 0.072 -0.123 -0.007

95-99 -0.007 0.017 0.105 -0.090 0.026

99-99.99999 0.142 0.061 0.066 -0.100 0.051

max load 0.142 0.061 0.066 -0.100 0.051

maximum statewide CDH2 0.085 -0.041 0.022 -0.190 -0.026

max zone-by-zone CDH2 0.085 -0.041 0.077 -0.305 0.039
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Impacts of TOU Peak Prices on avg. customer demand, kW

Specification 3: Adding CAC*CDH interactions

percentiles of peak load distribution zone 1 zone 2 zone 3 zone 4 statewide

0-40 -0.023 -0.079 -0.038 0.010 -0.060

40-60 -0.003 -0.048 0.056 0.145 0.001

60-80 0.001 -0.035 0.097 0.181 0.025

80-90 -0.014 -0.019 0.175 0.238 0.061

90-95 -0.005 -0.027 0.160 0.205 0.051

95-99 -0.006 0.007 0.202 0.285 0.088

99-99.99999 0.191 0.148 0.283 0.292 0.202

max load 0.191 0.148 0.283 0.292 0.202

maximum statewide CDH2 0.253 0.114 0.217 0.318 0.176

max zone-by-zone CDH2 0.253 0.114 0.311 0.359 0.220
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Appendix J

Population Weighted Cooling

Degree Hours and Cooling Degree

Hours Squared

TOU Peak

These tables report base-78 cooling degree hours and base-78 CDH2 in 1000’s.

Both Jensen’s inequality, the fact that some customers get weather data from the nearest

weather station which may be in a quite different weather zone1 and the fact that CDH

cannot go negative affect these estimates. Notice, for example, that if there were no variance

among the readings, that we would expect .036 thousand CDH2 – rather than the observed

.30 – in climate zone 1 for the 40-60 % of peak load scenario.

1For example, the city of Fresno is in Climate Zone 4, but the Fresno weather station includes some
climate zone 1 customers who live high in the mountains above the city.
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Appendix K

More Flexible Estimates of the

Relationship Between

Temperature, Climate Zone, and

Response

Regression specifications 1 through 4 reported above model response to dynamic

pricing as a single quadratic relationship between temperature and response. There are

troubling signs that 1) the rigid nature of this functional form drives some results and 2)

that the relationship differs between cool and hot regions. This section uses more flexible

estimation techniques to provide direct evidence about that hypothesis. This section uses

two techniques. All of its estimates begin by using splines to estimate energy use as a

piecewise linear function of temperature. The main estimates shown in Section K.4 and

figures K.4 and K.5 simply substitute the piecewise linear function of temperature for the

quadratic function of temperature in the difference-in-difference framework used above.

Section K.1 describes the simpler approach taken for the other figures in this section that

make non-parametric kernel estimates of the difference between the control and treatment

group’s temperature to energy use relationships.

The regressions here need work before they are complete. Most notably, figure K.4

and K.5 need to display the estimates’ standard errors.
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K.1 The Kernel Estimates

The kernel estimate in figures K.1, K.2, and K.3 make estimates as follows:

i. They analyze just the treatment period. This approach compares the treatment and

control groups without attempting to control for any preexisting differences that re-

main after controlling for observable characteristics. The model here estimates a

difference, not a difference-in-difference. This section takes a conventional regression

approach except that it makes nonparametric estimates of the impact of the interac-

tion between temperature and treatment status.

ii. It runs a very simple model of the relationship between customer-day characteristics

and electricity use in the control group. Roughly, I take the variables from specification

21 and simplify the section 2.3 regression2 to be: avgLoadit = αTX∗ + γT + εit. I

replace the quadratic function of temperature with a piecewise linear spline. The

spline creates variables of the form: SplineCDHk,t = max{0,CDHt −K} where knot

location K ∈ {0, 20, 40, 60, 70, 80, 90, 100, 110, 120} for hot climate zones 3 and 4 and

K ∈ {0, 20, 40, 60, 70, 80} for temperate climate zones 1 and 2.3 I use no interactions

between calendar days and temperature.

iii. It confirms that these models are flexible enough to capture the shape of the temperature-

driven changes in energy consumption by fitting a lowess, non-parametric, kernel es-

timator to the relationship between the temperature and the residuals from those

models. Lowess estimators are, in essence, a sophisticated way of calculating a mov-

ing local average and a local slope. Here, the local average considers the closest 15%

of the data. If the spline model fits well, then the lowess local average of the control

group residuals will stay close to zero everywhere. The set of splines above is chosen

to correct some disturbing regional deviations from zero that appear with smaller sets
1Like specification 2, the dependent variable is average 2-7PM weekday load in kW. The control variables

are: average daily electricity use, Summer 2002, kWh; number of people in the household; and afternoon
heating degree hours. The regressions also control for dummies for day before a critical day; day after
a critical day; apartment; being the hotter climate zone of the zone 1-2 or 3-4 pair; having central air
conditioning; having room air conditioning; day of week; month; and year. These estimates are run separately
for the hot and cool climate zones, which is equivalent to interacting a hot climate zone dummy with every
control variable.

2Stata’s lowess kernel estimator does not support the kind of weights used in the difference-in-difference
estimators, so the regressions underlying figures figures K.1, K.2, and K.3 are unweighted.

3The difference-in-difference splines estimate the slope of fewer segments because there are too few very
hot days during the pretreatment period.
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of splines. Specifically, this set of splines has 20 CDH between knots below 60 CDH,

and 10 CDH between knots in the more interesting region above 60 CDH. Sixty base

78oF CDH between 2 and 7PM roughly corresponds to a 2-7PM average temperature

of 90oF .

iv. The analysis then uses the control group’s coefficients to predict each treatment cus-

tomer’s energy use each day out-of-sample. It then makes kernel estimates of the

mean residual at each temperature level. They show that the treatment group used

less on average than the control group, creating negative residuals. If, conditional

on the characteristics controlled for above, the control and treatment groups have

no preexisting differences, then the resulting graphs will show the average impact of

dynamic pricing at each temperature.

K.2 The Difference-in-Difference Spline Estimates

Section 2.4 describes the difference-in-difference spline estimates as an extension

of the general econometric model described in Section 2.3.

The kernel estimates include knots at 110 and 120 CDH, but the difference-in-

difference framework leaves them out. Including them would be dicey because it would

require estimating the interaction between being a treatment customer and there being

more than 120 CDH in an afternoon off from only about 30 pretreatment customer-days

with temperatures above 120 which have a maximum of 123.5 CDH. The available June

data between 110 and 120 is similarly thin.

All of the high temperature difference-in-difference estimates yield suspect results.

They yield large magnitude but statistically insignificant point estimates of the treatment-

control difference in pretreatment sensitivity to weather at many of these line segments.

The estimation further reports that the “treatment effect” almost exactly negates these

coefficients.

Figures K.4 and K.5 visualize this issue by reporting both difference-in-difference

lines and “difference” lines that add the treatment customers’ pretreatment coefficient on

temperature to the coefficient on the new price being in effect. In the notation of Section

2.3, the difference lines report (δ̂+β̂)X∗ for TOU peak impacts and (δ̂+ψ̂)X∗ for the impact

of the critical price. By contrast, the difference-in-difference estimates are β̂X∗ and ψ̂X∗
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Figure K.1: Kernel estimates of the relationship between the impact of TOU peak prices and
temperature by climate zone. Plotted for temperatures between the 1st and 99th percentile
of the temperature range for each climate zone.
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Figure K.2: Kernel estimates of the relationship between the impact of critical prices and
temperature by climate zone. Plotted for temperatures between the 1st and 99th percentile
of the temperature range for each climate zone.
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Avg. Residuals by CDH from Regression on Control Data

Figure K.3: Nonparametric estimates of the impacts of dynamic pricing, by climate zone and
the price that is in effect. The two control group lines that stay quite close to zero everywhere
suggest that the functional form captures the average temperature-driven variation in the
control group’s electric use. The other four lines approximate the impacts of critical and
TOU peak prices by temperature. Plotted for all temperatures. Less than 1% of all zone 2
(4) data is above 95 (140) CDH and climate zone 1 (3) is even cooler, so impacts beyond
those temperatures may not be very reliable.
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respectively. The “difference” estimators yield more intuitively appealing results, especially

in conditions that were fairly hot for June.

K.3 Results

This analysis makes several tentative findings:

• It appears that the benefits of dynamic pricing increase in temperature in the 90’s, but

stop growing in temperature at higher temperatures and may even shrink when tem-

peratures become extreme. This finding makes sense. The control group’s air condi-

tioning load will stop growing in temperature when it gets so hot that air conditioners

start running continuously. Meanwhile, dynamic pricing customers’ air conditioning

loads will increase with temperature at these levels if they responded to the higher

price by increasing their thermostat set points a few degrees. Thus the treatment

group’s use may grow when the control groups’ use is not because it is more work to

keep a house at 80oF when the outside temperature is 100oF rather than 90oF , but

an air conditioner may be running flat out to keep a house as close as possible to 70oF

regardless of whether it is 95oF or 100oF .

• Temperature sensitivity appears to be particularly high between roughly 70 and 100

to 110 CDH (i.e. the range between averaging 92 and 100oF for the afternoon).

• There are important differences in the relationship between the cooler (1-2) and hotter

(3-4) zones, but more modest differences between zones 1 and 2 and between 3 and

4. Impacts in zone 1 and, to a lesser extent, zone 2 are fairly temperature insensitive.

Thus, zone dummies will capture the difference between zones 1 and 2 reasonably

well.

• The difference estimators make very few point estimates suggesting that dynamic

pricing was counterproductive and raised energy use.4 Plotting the best fit quadratic

relationship on these difference estimates reveals a very small region in which the point

estimates have the “wrong” sign. Much of the counter productivity finding comes

from fitting the difference-in-difference estimator’s controls for preexisting differences
4The exception involves the impact of critical pricing on consumption in desert zone 4 on very cool days.

These customer-days are in the first percentile of all zone 4 summer, critical customer-days – and should be
considered imprecisely estimated.
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Impacts of CPP on Electricity Use in Zones 1 and 2 by Temperature
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Figure K.4: Splines fit to the temperature-energy use relationship for temperate climate
zones 1 and 2. The Difference-in-Difference (DiD) lines measure impact relative to the
“preexisting differences” measured from behavior during the quite brief, relatively cool
pretreatment period. The difference lines show the sum of the impact and treatment cus-
tomer interaction terms that identify control-treatment differences during the pretreatment
and treatment periods respectively. The intercept in this graph comes from the average
statewide customer characteristics, except that the weights on the zone 1 and 2 dummies
have been scaled so that they sum to 100%, while the weight on the zone 3 dummy is set to
zero. This is clearly a flawed approach. Future revisions will use customer characteristics
conditional on being in zones 1 and 2 and will display the standard errors.
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Impacts of CPP on Electricity Use in Zones 3 and 4 by Temperature
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Figure K.5: Splines fit to the temperature-energy use relationship for temperate climate
zones 3 and 4. This uses the same techniques and conventions as Graph K.4. The Difference-
in-Difference regression finds that the treatment group used far less power than the control
group during (rare) very hot conditions in the pretreatment period. These are large mag-
nitude but quite imprecisely estimated effects. Then we find that during the treatment
period, this difference all but disappears. This suggests that the finding that CPP is coun-
terproductive during cool temperature conditions is, most likely, spurious.
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to thin and idiosyncratic high temperature, pretreatment data. When we change them

to difference estimators, we notice that the point estimates showing dynamic pricing

to be counterproductive exist to almost exactly negate strange, imprecisely estimated

pretreatment relationships.

K.4 Regressions with Splines

Dependent variable: consumption on non holiday weekdays in kW (kWh/h). Neg-

ative values indicate that dynamic pricing customers used less power than comparable

control customers.
Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

TOU Peak Price in Effect
-0.178 -0.330 0.126

( 0.177 ) ( 0.227 ) ( 0.256 )

TOU Peak Price in Effect * electric

use, kWh / day , summer 2002

-0.004 -0.006 0.004

( 0.004 ) ( 0.005 ) ( 0.005 )

TOU Peak Price in Effect * high ratio

rate customer.

-0.013 -0.017 0.017

( 0.039 ) ( 0.043 ) ( 0.054 )

TOU Peak Price in Effect *

apartment

-0.056 0.012 -0.011

( 0.061 ) ( 0.086 ) ( 0.100 )

TOU Peak Price in Effect * climate

zone 1

0.268∗ 0.236 0.121

( 0.161 ) ( 0.180 ) ( 0.187 )

TOU Peak Price in Effect * climate

zone 2

0.219 0.159 0.080

( 0.158 ) ( 0.178 ) ( 0.175 )

TOU Peak Price in Effect * climate

zone 3

0.208 0.170 0.067

( 0.162 ) ( 0.175 ) ( 0.169 )

TOU Peak Price in Effect * cooling

degree hours 2-7pm

0.020∗∗∗ 0.021∗∗∗ 0.024∗∗∗

( 0.007 ) ( 0.008 ) ( 0.009 )

TOU Peak Price in Effect * impact of

a CDH beyond 20

-0.046∗∗∗ -0.048∗∗∗ -0.059∗∗∗

( 0.015 ) ( 0.016 ) ( 0.018 )
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Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

TOU Peak Price in Effect * impact of

a CDH beyond 40

0.061∗∗∗ 0.058∗∗ 0.065∗∗∗

( 0.022 ) ( 0.023 ) ( 0.022 )

TOU Peak Price in Effect * impact of

a CDH beyond 60

-0.044 -0.033 -0.004

( 0.043 ) ( 0.045 ) ( 0.044 )

TOU Peak Price in Effect * impact of

a CDH beyond 70

-0.022 -0.019 -0.079

( 0.062 ) ( 0.063 ) ( 0.071 )

TOU Peak Price in Effect * impact of

a CDH beyond 80

0.019 -0.007 0.035

( 0.060 ) ( 0.060 ) ( 0.067 )

TOU Peak Price in Effect * impact of

a CDH beyond 90

-0.017 0.018 -0.018

( 0.054 ) ( 0.055 ) ( 0.057 )

TOU Peak Price in Effect * impact of

a CDH beyond 100

0.032 0.008 0.042

( 0.044 ) ( 0.046 ) ( 0.044 )

TOU Peak Price in Effect * CDH *

zone is 1 or 2

-0.021∗∗ -0.024∗∗ -0.027∗∗

( 0.009 ) ( 0.010 ) ( 0.012 )

TOU Peak Price in Effect * zone 1 or

2 * impact of a CDH beyond 20

0.062∗∗∗ 0.066∗∗∗ 0.093∗∗∗

( 0.021 ) ( 0.022 ) ( 0.027 )

TOU Peak Price in Effect * zone 1 or

2 * impact of a CDH beyond 40

-0.092∗∗∗ -0.087∗∗ -0.148∗∗∗

( 0.035 ) ( 0.037 ) ( 0.043 )

TOU Peak Price in Effect * zone 1 or

2 * impact of a CDH beyond 60

0.086 0.024 0.116

( 0.094 ) ( 0.101 ) ( 0.111 )

TOU Peak Price in Effect * zone 1 or

2 * impact of a CDH beyond 70

0.020 0.099 0.079

( 0.103 ) ( 0.107 ) ( 0.115 )

TOU Peak Price in Effect * heating

degree hours 2-7pm

-0.002 -0.002 -0.008

( 0.002 ) ( 0.002 ) ( 0.006 )

TOU peak price in effect * day before

critical price

-0.006 -0.006 -0.004

( 0.012 ) ( 0.013 ) ( 0.013 )

TOU peak price in effect * day after

critical price

0.027∗∗ 0.034∗∗ 0.016
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Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

( 0.013 ) ( 0.014 ) ( 0.014 )

TOU Peak Price in Effect * central

AC

. -0.038 -0.054

. ( 0.079 ) ( 0.085 )

TOU Peak Price in Effect * room AC
. 0.090 -0.091

. ( 0.082 ) ( 0.114 )

TOU Peak Price in Effect * number of

bedrooms

. 0.063 0.048

. ( 0.040 ) ( 0.042 )

TOU Peak Price in Effect * # people

in the household

. 0.010 0.054

. ( 0.022 ) ( 0.038 )

TOU Peak Price in Effect * heating

degree hours 2-7pm squared (1000’s)

. . 0.148

. . ( 0.125 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, previous day

. . -0.00098

. . ( 0.00061 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, two days before

. . -0.00012

. . ( 0.00043 )

TOU Peak Price in Effect * cooling

degree hours 2-7PM, three days before

. . -0.001∗∗

. . ( 0.00043 )

TOU Peak Price in Effect * swimming

pool

. . -0.268∗

. . ( 0.146 )

TOU Peak Price in Effect * # kids

under 5 in household

. . -0.118∗

. . ( 0.070 )

TOU Peak Price in Effect * # people

over 65 in household

. . -0.114∗∗

. . ( 0.054 )

TOU Peak Price in Effect * electric

cooktop

. . 0.176

. . ( 0.144 )

TOU Peak Price in Effect * customer

stayed in expt. throughout expt.

. . -0.190∗∗

. . ( 0.087 )
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Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

TOU Peak Price in Effect * cooling

degree hours 2-7pm * room AC

. . 0.009∗∗∗

. . ( 0.003 )

TOU Peak Price in Effect * heating

degree hours 2-7PM*electric heat

. . 0.011∗∗∗

. . ( 0.003 )

TOU Peak Price in Effect * electric

heat

. . -0.139

. . ( 0.093 )

TOU Peak Price in Effect * # kids

over 5 in household

. . -0.062

. . ( 0.050 )

TOU Peak Price in Effect * work from

home 0-10 hrs/wk

. . -0.057

. . ( 0.117 )

TOU Peak Price in Effect * electric

oven

. . -0.125

. . ( 0.139 )

TOU Peak Price in Effect * number of

refrigerators and freezers

. . -0.120

. . ( 0.083 )

TOU Peak Price in Effect * work from

home 11-30 hrs/wk

. . 0.063

. . ( 0.102 )

TOU Peak Price in Effect * work from

home >30 hrs/wk

. . -0.310

. . ( 0.255 )

TOU Peak Price in Effect * spa
. . 0.070

. . ( 0.136 )

TOU Peak Price in Effect * customer

stayed in expt. < 4.5 months

. . -0.074

. . ( 0.130 )

Critical Price in Effect
-0.117 -0.146 0.419

( 0.256 ) ( 0.321 ) ( 0.333 )

Critical Price in Effect * day before

critical price

0.084∗∗∗ 0.082∗∗∗ 0.047

( 0.024 ) ( 0.027 ) ( 0.032 )

Critical Price in Effect * day after

critical price

0.019 0.023 -0.007
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Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

( 0.025 ) ( 0.028 ) ( 0.032 )

Critical Price in Effect * electric use,

kWh / day , summer 2002

-0.018∗∗∗ -0.020∗∗∗ -0.011

( 0.005 ) ( 0.006 ) ( 0.007 )

Critical Price in Effect * high ratio

rate customer.

0.227∗ 0.255∗ 0.125

( 0.136 ) ( 0.152 ) ( 0.109 )

Critical Price in Effect * apartment
-0.016 0.020 -0.020

( 0.091 ) ( 0.125 ) ( 0.146 )

Critical Price in Effect * climate zone

1

0.274 0.176 0.072

( 0.233 ) ( 0.263 ) ( 0.264 )

Critical Price in Effect * climate zone

2

0.264 0.135 0.014

( 0.230 ) ( 0.257 ) ( 0.244 )

Critical Price in Effect * climate zone

3

0.221 0.173 0.076

( 0.205 ) ( 0.221 ) ( 0.217 )

Critical Price in Effect * cooling

degree hours 2-7pm

0.012 0.012 0.016

( 0.010 ) ( 0.011 ) ( 0.011 )

Critical Price in Effect * impact of a

CDH beyond 20

-0.017 -0.016 -0.032

( 0.019 ) ( 0.021 ) ( 0.024 )

Critical Price in Effect * impact of a

CDH beyond 40

0.030 0.025 0.038

( 0.024 ) ( 0.026 ) ( 0.028 )

Critical Price in Effect * impact of a

CDH beyond 60

-0.043 -0.027 -0.006

( 0.046 ) ( 0.049 ) ( 0.049 )

Critical Price in Effect * impact of a

CDH beyond 70

-0.010 -0.012 -0.069

( 0.065 ) ( 0.065 ) ( 0.074 )

Critical Price in Effect * impact of a

CDH beyond 80

-0.008 -0.026 0.035

( 0.061 ) ( 0.061 ) ( 0.071 )

Critical Price in Effect * impact of a

CDH beyond 90

0.008 0.048 -0.020

( 0.059 ) ( 0.059 ) ( 0.060 )
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Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

Critical Price in Effect * impact of a

CDH beyond 100

0.036 -0.002 0.047

( 0.046 ) ( 0.046 ) ( 0.045 )

Critical Price in Effect * CDH * zone

is 1 or 2

-0.018 -0.024∗ -0.025∗

( 0.012 ) ( 0.013 ) ( 0.014 )

Critical Price in Effect * zone 1 or 2 *

impact of a CDH beyond 20

0.041∗ 0.052∗ 0.079∗∗

( 0.025 ) ( 0.026 ) ( 0.031 )

Critical Price in Effect * zone 1 or 2 *

impact of a CDH beyond 40

-0.063∗ -0.068 -0.130∗∗∗

( 0.038 ) ( 0.042 ) ( 0.050 )

Critical Price in Effect * zone 1 or 2 *

impact of a CDH beyond 60

0.056 0.029 0.126

( 0.102 ) ( 0.113 ) ( 0.126 )

Critical Price in Effect * zone 1 or 2 *

impact of a CDH beyond 70

0.044 0.085 0.052

( 0.109 ) ( 0.117 ) ( 0.123 )

Critical Price in Effect * heating

degree hours 2-7pm

0.007 0.003 -0.029∗

( 0.007 ) ( 0.010 ) ( 0.017 )

Critical Price in Effect * central AC
. -0.224∗∗ -0.252∗

. ( 0.114 ) ( 0.130 )

Critical Price in Effect * room AC
. 0.250∗∗ -0.145

. ( 0.119 ) ( 0.170 )

Critical Price in Effect * number of

bedrooms

. 0.040 0.036

. ( 0.059 ) ( 0.058 )

Critical Price in Effect * # people in

the household

. 0.033 0.085∗

. ( 0.027 ) ( 0.047 )

Critical Price in Effect * heating

degree hours 2-7pm squared (1000’s)

. . 1.132

. . ( 0.692 )

Critical Price in Effect * cooling

degree hours 2-7PM, previous day

. . -0.002

. . ( 0.001 )

Critical Price in Effect * cooling

degree hours 2-7PM, two days before

. . 0.001
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5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

. . ( 0.001 )

Critical Price in Effect * cooling

degree hours 2-7PM, three days before

. . -0.002

. . ( 0.001 )

Critical Price in Effect * swimming

pool

. . -0.259

. . ( 0.193 )

Critical Price in Effect * # kids under

5 in household

. . -0.225∗∗

. . ( 0.092 )

Critical Price in Effect * # people

over 65 in household

. . -0.230∗∗∗

. . ( 0.087 )

Critical Price in Effect * electric

cooktop

. . 0.352∗

. . ( 0.191 )

Critical Price in Effect * customer

stayed in expt. throughout expt.

. . -0.328∗∗

. . ( 0.135 )

Critical Price in Effect * cooling

degree hours 2-7pm * room AC

. . 0.009∗∗∗

. . ( 0.003 )

Critical Price in Effect * heating

degree hours 2-7PM*electric heat

. . 0.046∗∗

. . ( 0.021 )

Critical Price in Effect * electric heat
. . -0.167

. . ( 0.138 )

Critical Price in Effect * # kids over 5

in household

. . -0.055

. . ( 0.066 )

Critical Price in Effect * work from

home 0-10 hrs/wk

. . -0.020

. . ( 0.165 )

Critical Price in Effect * electric oven
. . -0.218

. . ( 0.180 )

Critical Price in Effect * number of

refrigerators and freezers

. . -0.252∗∗

. . ( 0.103 )
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5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

Critical Price in Effect * work from

home 11-30 hrs/wk

. . -0.021

. . ( 0.161 )

Critical Price in Effect * work from

home >30 hrs/wk

. . -0.242

. . ( 0.280 )

Critical Price in Effect * spa
. . 0.104

. . ( 0.188 )

Critical Price in Effect * customer

stayed in expt. < 4.5 months

. . 0.135

. . ( 0.161 )

Treatment Customer
0.309 0.588∗∗ .

( 0.193 ) ( 0.247 ) .

Treatment Customer * electric use,

kWh / day , summer 2002

0.00021 0.002 .

( 0.004 ) ( 0.005 ) .

Treatment Customer * apartment
0.106∗ -0.015 .

( 0.058 ) ( 0.090 ) .

Treatment Customer * climate zone 1
-0.382∗∗ -0.404∗∗ .

( 0.180 ) ( 0.196 ) .

Treatment Customer * climate zone 2
-0.365∗∗ -0.429∗∗ .

( 0.175 ) ( 0.190 ) .

Treatment Customer * climate zone 3
-0.295∗ -0.344∗ .

( 0.176 ) ( 0.184 ) .

Treatment Customer * cooling degree

hours 2-7pm

-0.024∗∗∗ -0.025∗∗∗ -0.026∗∗∗

( 0.007 ) ( 0.007 ) ( 0.009 )

Treatment Customer * impact of a

CDH beyond 20

0.042∗∗∗ 0.043∗∗∗ 0.052∗∗∗

( 0.014 ) ( 0.015 ) ( 0.018 )

Treatment Customer * impact of a

CDH beyond 40

-0.049∗∗ -0.044∗∗ -0.054∗∗

( 0.021 ) ( 0.022 ) ( 0.022 )

Treatment Customer * impact of a

CDH beyond 60

0.024 0.012 -0.008
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5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

( 0.041 ) ( 0.043 ) ( 0.044 )

Treatment Customer * impact of a

CDH beyond 70

0.038 0.034 0.089

( 0.059 ) ( 0.060 ) ( 0.069 )

Treatment Customer * impact of a

CDH beyond 80

-0.032 -0.008 -0.053

( 0.054 ) ( 0.054 ) ( 0.064 )

Treatment Customer * impact of a

CDH beyond 90

0.021 -0.013 0.033

( 0.048 ) ( 0.048 ) ( 0.054 )

Treatment Customer * impact of a

CDH beyond 100

-0.017 0.006 -0.035

( 0.037 ) ( 0.038 ) ( 0.042 )

Treatment Customer * Cooling

Degree Hours * Zone 1 or 2

0.023∗∗ 0.025∗∗ .

( 0.009 ) ( 0.010 ) .

Treatment Customer * zone 1 or 2 *

impact of a CDH beyond 20

-0.054∗∗∗ -0.056∗∗∗ -0.078∗∗∗

( 0.020 ) ( 0.022 ) ( 0.027 )

Treatment Customer * zone 1 or 2 *

impact of a CDH beyond 40

0.071∗∗ 0.064∗ 0.118∗∗∗

( 0.033 ) ( 0.036 ) ( 0.041 )

Treatment Customer * zone 1 or 2 *

impact of a CDH beyond 60

-0.044 0.011 -0.079

( 0.093 ) ( 0.101 ) ( 0.112 )

Treatment Customer * zone 1 or 2 *

impact of a CDH beyond 70

-0.052 -0.115 -0.093

( 0.100 ) ( 0.106 ) ( 0.112 )

Treatment Customer * heating degree

hours 2-7pm

0.00020 0.00054 0.004

( 0.002 ) ( 0.002 ) ( 0.005 )

Treatment Customer * central AC
. -0.032 .

. ( 0.073 ) .

Treatment Customer * room AC
. 0.095 .

. ( 0.084 ) .

Treatment Customer * number of

bedrooms

. -0.100∗∗ .

. ( 0.043 ) .



www.manaraa.com

289

Specification

5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

Treatment Customer * # people in

the household

. 0.017 .

. ( 0.020 ) .

Treatment Customer * heating degree

hours 2-7pm squared (1000’s)

. . -0.175

. . ( 0.123 )

Treatment Period (after 7/1/2003)
0.075 0.054 -0.218

( 0.127 ) ( 0.162 ) ( 0.193 )

Treatment Period * electric use, kWh

/ day , summer 2002

0.007∗∗ 0.006 0.00099

( 0.003 ) ( 0.004 ) ( 0.004 )

Treatment Period * apartment
0.039 0.002 0.016

( 0.041 ) ( 0.060 ) ( 0.064 )

Treatment Period * climate zone 1
-0.098 0.015 0.005

( 0.122 ) ( 0.135 ) ( 0.154 )

Treatment Period * climate zone 2
-0.079 0.021 0.022

( 0.121 ) ( 0.137 ) ( 0.144 )

Treatment Period * climate zone 3
-0.085 -0.034 -0.035

( 0.125 ) ( 0.135 ) ( 0.140 )

Treatment Period * cooling degree

hours 2-7pm

-0.008 -0.009 -0.025∗∗∗

( 0.006 ) ( 0.006 ) ( 0.007 )

Treatment Period * impact of a CDH

beyond 20

0.015 0.017 0.048∗∗∗

( 0.012 ) ( 0.012 ) ( 0.014 )

Treatment Period * impact of a CDH

beyond 40

-0.028∗ -0.027 -0.054∗∗∗

( 0.016 ) ( 0.017 ) ( 0.018 )

Treatment Period * impact of a CDH

beyond 60

0.033 0.036 0.031

( 0.031 ) ( 0.031 ) ( 0.033 )

Treatment Period * impact of a CDH

beyond 70

-0.013 -0.040 -0.00092

( 0.047 ) ( 0.048 ) ( 0.057 )

Treatment Period * impact of a CDH

beyond 80

0.035 0.078∗ 0.044
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5: Simplest

Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

( 0.046 ) ( 0.046 ) ( 0.053 )

Treatment Period * impact of a CDH

beyond 90

-0.010 -0.057 -0.037

( 0.037 ) ( 0.037 ) ( 0.038 )

Treatment Period * impact of a CDH

beyond 100

-0.029 0.003 -0.011

( 0.026 ) ( 0.028 ) ( 0.022 )

Treatment Period * CDH * zone is 1

or 2

0.011 0.011 0.025∗∗

( 0.008 ) ( 0.008 ) ( 0.010 )

Treatment Period * zone 1 or 2 *

impact of a CDH beyond 20

-0.028∗ -0.030∗ -0.065∗∗∗

( 0.016 ) ( 0.017 ) ( 0.022 )

Treatment Period * zone 1 or 2 *

impact of a CDH beyond 40

0.060∗∗ 0.062∗∗ 0.114∗∗∗

( 0.026 ) ( 0.027 ) ( 0.034 )

Treatment Period * zone 1 or 2 *

impact of a CDH beyond 60

-0.129∗ -0.127∗ -0.184∗∗

( 0.068 ) ( 0.066 ) ( 0.084 )

Treatment Period * zone 1 or 2 *

impact of a CDH beyond 70

0.066 0.071 0.060

( 0.076 ) ( 0.072 ) ( 0.090 )

Treatment Period * heating degree

hours 2-7pm

0.002∗ 0.002 0.016∗∗∗

( 0.001 ) ( 0.002 ) ( 0.004 )

Treatment Period * central AC
. 0.149∗∗ 0.169∗∗

. ( 0.061 ) ( 0.067 )

Treatment Period * room AC
. -0.032 0.028

. ( 0.058 ) ( 0.098 )

Treatment Period * number of

bedrooms

. -0.032 -0.039

. ( 0.030 ) ( 0.031 )

Treatment Period * # people in the

household

. 0.00092 -0.023

. ( 0.017 ) ( 0.027 )

Treatment Period * heating degree

hours 2-7pm squared (1000’s)

. . -0.262∗∗

. . ( 0.105 )
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Diff in Diff
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6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

Treatment Period * cooling degree

hours 2-7PM, previous day

. . 0.003∗∗∗

. . ( 0.00047 )

Treatment Period * cooling degree

hours 2-7PM, two days before

. . 0.001∗∗∗

. . ( 0.00037 )

Treatment Period * cooling degree

hours 2-7PM, three days before

. . 0.00089∗∗∗

. . ( 0.00034 )

Treatment Period * swimming pool
. . 0.229∗∗

. . ( 0.116 )

Treatment Period * # kids under 5 in

household

. . 0.110∗∗

. . ( 0.053 )

Treatment Period * # people over 65

in household

. . 0.151∗∗∗

. . ( 0.044 )

Treatment Period * electric cooktop
. . -0.125

. . ( 0.117 )

Treatment Period * customer stayed

in expt. throughout expt.

. . 0.177∗∗

. . ( 0.070 )

Treatment Period * cooling degree

hours 2-7pm * room AC

. . -0.007∗∗

. . ( 0.003 )

Treatment Period * heating degree

hours 2-7PM*electric heat

. . -0.007∗∗∗

. . ( 0.002 )

Treatment Period * electric heat
. . 0.140∗∗

. . ( 0.069 )

Treatment Period * # kids over 5 in

household

. . 0.069∗∗

. . ( 0.031 )

Treatment Period * work from home

0-10 hrs/wk

. . 0.198∗∗

. . ( 0.082 )

Treatment Period * electric oven
. . -0.018
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Diff in Diff
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Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

. . ( 0.108 )

Treatment Period * number of

refrigerators and freezers

. . 0.014

. . ( 0.061 )

Treatment Period * work from home

11-30 hrs/wk

. . -0.017

. . ( 0.077 )

Treatment Period * work from home

>30 hrs/wk

. . 0.078

. . ( 0.203 )

Treatment Period * spa
. . -0.073

. . ( 0.105 )

Treatment Period * customer stayed

in expt. < 4.5 months

. . 0.061

. . ( 0.108 )

Critical Period
-0.174 -0.385∗∗∗ -0.316∗

( 0.123 ) ( 0.141 ) ( 0.170 )

Critical Period * electric use, kWh /

day , summer 2002

0.017∗∗∗ 0.015∗∗∗ 0.017∗∗∗

( 0.002 ) ( 0.003 ) ( 0.003 )

Critical Period * high ratio rate

customer.

-0.214∗ -0.224∗ -0.044

( 0.118 ) ( 0.131 ) ( 0.074 )

Critical Period * apartment
-0.008 0.047 0.029

( 0.043 ) ( 0.065 ) ( 0.083 )

Critical Period * climate zone 1
-0.049 0.086 0.135

( 0.114 ) ( 0.115 ) ( 0.123 )

Critical Period * climate zone 2
-0.027 0.059 0.164

( 0.114 ) ( 0.117 ) ( 0.124 )

Critical Period * climate zone 3
0.051 0.087 0.091

( 0.081 ) ( 0.082 ) ( 0.098 )

Critical Period * cooling degree hours

2-7pm

-0.000025 -0.00020 -0.001

( 0.005 ) ( 0.005 ) ( 0.006 )
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Diff in Diff
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Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

Critical Period * impact of a CDH

beyond 20

-0.014 -0.013 -0.009

( 0.011 ) ( 0.012 ) ( 0.015 )

Critical Period * impact of a CDH

beyond 40

0.023∗ 0.022 0.014

( 0.013 ) ( 0.014 ) ( 0.017 )

Critical Period * impact of a CDH

beyond 60

-0.005 -0.006 0.017

( 0.016 ) ( 0.018 ) ( 0.020 )

Critical Period * impact of a CDH

beyond 70

-0.013 -0.009 -0.033

( 0.025 ) ( 0.026 ) ( 0.026 )

Critical Period * impact of a CDH

beyond 80

0.00062 -0.009 -0.00086

( 0.026 ) ( 0.026 ) ( 0.027 )

Critical Period * impact of a CDH

beyond 90

0.016 0.015 0.019

( 0.027 ) ( 0.028 ) ( 0.029 )

Critical Period * impact of a CDH

beyond 100

-0.011 0.00029 -0.006

( 0.018 ) ( 0.019 ) ( 0.019 )

Critical Period * CDH * zone is 1 or 2
0.003 0.007 0.003

( 0.006 ) ( 0.006 ) ( 0.007 )

Critical Period * zone 1 or 2 * impact

of a CDH beyond 20

0.008 -0.003 -0.001

( 0.012 ) ( 0.015 ) ( 0.018 )

Critical Period * zone 1 or 2 * impact

of a CDH beyond 40

-0.013 0.00010 0.002

( 0.016 ) ( 0.018 ) ( 0.022 )

Critical Period * zone 1 or 2 * impact

of a CDH beyond 60

-0.005 -0.021 -0.042

( 0.024 ) ( 0.027 ) ( 0.035 )

Critical Period * zone 1 or 2 * impact

of a CDH beyond 70

0.005 0.020 0.042

( 0.020 ) ( 0.022 ) ( 0.029 )

Critical Period * heating degree hours

2-7pm

-0.008 -0.010 0.013

( 0.005 ) ( 0.008 ) ( 0.013 )

Critical Period * central AC
. 0.261∗∗∗ 0.277∗∗∗
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Diff in Diff
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Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

. ( 0.053 ) ( 0.062 )

Critical Period * room AC
. -0.055 0.107

. ( 0.061 ) ( 0.095 )

Critical Period * number of bedrooms
. 0.028 0.006

. ( 0.024 ) ( 0.031 )

Critical Period * # people in the

household

. -0.012 -0.005

. ( 0.012 ) ( 0.018 )

Critical Period * heating degree hours

2-7pm squared (1000’s)

. . -0.833∗

. . ( 0.504 )

Critical Period * cooling degree hours

2-7PM, previous day

. . -0.00067

. . ( 0.00099 )

Critical Period * cooling degree hours

2-7PM, two days before

. . -0.002∗∗

. . ( 0.001 )

Critical Period * cooling degree hours

2-7PM, three days before

. . 0.002∗∗

. . ( 0.001 )

Critical Period * swimming pool
. . -0.026

. . ( 0.091 )

Critical Period * # kids under 5 in

household

. . 0.027

. . ( 0.048 )

Critical Period * # people over 65 in

household

. . 0.115∗∗

. . ( 0.053 )

Critical Period * electric cooktop
. . -0.134∗

. . ( 0.079 )

Critical Period * customer stayed in

expt. throughout expt.

. . 0.149∗∗

. . ( 0.068 )

Critical Period * cooling degree hours

2-7pm * room AC

. . -0.00060

. . ( 0.002 )
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Diff in Diff
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Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

Critical Period * heating degree hours

2-7PM*electric heat

. . 0.004

. . ( 0.008 )

Critical Period * electric heat
. . -0.056

. . ( 0.071 )

Critical Period * # kids over 5 in

household

. . -0.020

. . ( 0.027 )

Critical Period * work from home 0-10

hrs/wk

. . -0.003

. . ( 0.068 )

Critical Period * electric oven
. . 0.093

. . ( 0.069 )

Critical Period * number of

refrigerators and freezers

. . 0.021

. . ( 0.045 )

Critical Period * work from home

11-30 hrs/wk

. . 0.106

. . ( 0.103 )

Critical Period * work from home >30

hrs/wk

. . 0.044

. . ( 0.143 )

Critical Period * spa
. . -0.055

. . ( 0.074 )

Critical Period * customer stayed in

expt. < 4.5 months

. . -0.295∗∗∗

. . ( 0.111 )

electric use, kWh / day, summer 2002
0.047∗∗∗ 0.045∗∗∗ .

( 0.003 ) ( 0.004 ) .

trt. customer on high-ratio rate
-0.020 0.009 .

( 0.035 ) ( 0.038 ) .

apartment
-0.059 0.051 .

( 0.044 ) ( 0.078 ) .

climate zone 1
0.403∗∗∗ 0.444∗∗∗ .



www.manaraa.com

296

Specification
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Diff in Diff

Specification

6: Adding

Survey Vari-

ables

Specification

8: Adds

person FE’s;

controls

( 0.147 ) ( 0.155 ) .

climate zone 2
0.425∗∗∗ 0.463∗∗∗ .

( 0.142 ) ( 0.152 ) .

climate zone 3
0.362∗∗ 0.382∗∗∗ .

( 0.144 ) ( 0.149 ) .

cooling degree hours 2-7PM, base 78
0.024∗∗∗ 0.025∗∗∗ 0.043∗∗∗

( 0.006 ) ( 0.006 ) ( 0.007 )

impact of a CDH beyond 20
-0.021∗ -0.022∗ -0.056∗∗∗

( 0.011 ) ( 0.012 ) ( 0.014 )

impact of a CDH beyond 40
0.028∗ 0.026 0.053∗∗∗

( 0.015 ) ( 0.016 ) ( 0.017 )

impact of a CDH beyond 60
-0.019 -0.022 -0.025

( 0.029 ) ( 0.030 ) ( 0.032 )

impact of a CDH beyond 70
-0.00051 0.026 -0.004

( 0.045 ) ( 0.045 ) ( 0.056 )

impact of a CDH beyond 80
-0.012 -0.051 -0.021

( 0.041 ) ( 0.041 ) ( 0.050 )

impact of a CDH beyond 90
-0.010 0.033 0.011

( 0.032 ) ( 0.031 ) ( 0.034 )

impact of a CDH beyond 100
0.025 -0.003 0.012

( 0.021 ) ( 0.021 ) ( 0.019 )

CDH * zone is 1 or 2
-0.020∗∗∗ -0.019∗∗ -0.034∗∗∗

( 0.008 ) ( 0.008 ) ( 0.010 )

zone 1-2: impact of a CDH beyond 20
0.032∗∗ 0.033∗∗ 0.066∗∗∗

( 0.016 ) ( 0.017 ) ( 0.021 )

zone 1-2: impact of a CDH beyond 40
-0.065∗∗∗ -0.065∗∗ -0.107∗∗∗

( 0.025 ) ( 0.026 ) ( 0.032 )
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ables

Specification

8: Adds

person FE’s;

controls

zone 1-2: impact of a CDH beyond 60
0.121∗ 0.121∗ 0.181∗∗

( 0.070 ) ( 0.068 ) ( 0.088 )

zone 1-2: impact of a CDH beyond 70
-0.054 -0.065 -0.061

( 0.075 ) ( 0.072 ) ( 0.090 )

heating degree hours 2-7pm
0.00033 0.00022 -0.009∗∗

( 0.001 ) ( 0.002 ) ( 0.004 )

Tuesday
-0.019∗∗∗ -0.018∗∗∗ -0.020∗∗∗

( 0.005 ) ( 0.006 ) ( 0.007 )

Wednesday
-0.011∗ -0.008 -0.014

( 0.006 ) ( 0.007 ) ( 0.008 )

Thursday
-0.023∗∗∗ -0.020∗∗∗ -0.015∗

( 0.007 ) ( 0.008 ) ( 0.009 )

Friday
-0.019∗∗∗ -0.015∗ -0.007

( 0.007 ) ( 0.008 ) ( 0.009 )

year 2004
-0.064∗∗∗ -0.068∗∗∗ -0.026

( 0.024 ) ( 0.026 ) ( 0.031 )

June
0.058∗∗∗ 0.056∗∗∗ 0.049∗∗∗

( 0.012 ) ( 0.014 ) ( 0.016 )

July
0.132∗∗∗ 0.136∗∗∗ 0.111∗∗∗

( 0.019 ) ( 0.020 ) ( 0.022 )

August
0.135∗∗∗ 0.143∗∗∗ 0.117∗∗∗

( 0.019 ) ( 0.021 ) ( 0.024 )

September
0.042∗∗ 0.045∗∗ 0.030

( 0.017 ) ( 0.018 ) ( 0.021 )

October
-0.092∗∗∗ -0.094∗∗∗ -0.079∗∗

( 0.026 ) ( 0.028 ) ( 0.033 )

central AC
. 0.068 .
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ables

Specification

8: Adds

person FE’s;

controls

. ( 0.057 ) .

room AC
. -0.039 .

. ( 0.067 ) .

number of bedrooms
. 0.071∗∗ .

. ( 0.034 ) .

# people in the household
. 0.010 .

. ( 0.016 ) .

heating degree hours 2-7pm squared,

1000’s

. . 0.256∗∗

. . ( 0.101 )

constant
-0.505∗∗∗ -0.814∗∗∗ 0.606∗∗∗

( 0.159 ) ( 0.202 ) ( 0.030 )

Robust standard errors, clustered by customer in parentheses.

Significance: *=10% ** =5% ***=1%

Abbreviations: AC: air conditioning CAC: central air conditioning FE’s: fixed effects

Cooling degree hours (CDH) are base 78o F. Heating degree hours are base 65o F.

Splines for impact of a CDH beyond K are defined as: SplineCDHk = max{0,CDH−K}
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Appendix L

Optimization Algorithm

The optimization in section can be formulated as a mixed integer linear program-

ming problem. Operations researchers often take a first pass at modeling problems like

this one in a mixed integer framework, only to discover that the formulation is intractable

because it requires searching an enormous state space. The analysis here collided with ex-

actly that problem. Analysts often respond by changing their modeling methodology or by

finding a more tractable, equivalent set of constraints and variables.

This paper changed methodologies to use a specialized algorithm written in Sci-

entific Python that exploits more of problem’s structure solves it quite effectively. A naive

approach to this problem would attack the challenge of finding the arrangement that maxi-

mizes the number of customers get consistent offers by visiting up to 2N possibilities (where

N ≈ 500 customers ) and would repeat this process for each possible grouping of the 16

groups into the smaller number of categories. This algorithm both finds a simpler way to

compute the set of customers who would be getting consistent offers and finds a way to do

most of that work just once, before beginning to search the few million ways to combine

groups into categories. The approach begins by realizing that there is a well defined range

of consistent offers for each customer, which Figure L.1 shows.

Graphically, we can use figure L.2 and see the central intuition behind the algo-

rithm algorithm as:

• Try a combination of groups into categories. For this example, ,merge three groups

into two categories. One categorization might combine the “x” group and the “∆”

group, leaving the “o” group separate. Another might combine the “x” group and the
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rights in offers
above the dashed
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consistent
rebates for X

Most customers can afford a range of consistent offers

Figure L.1: Visualizing the range of consistent offers for each customer.
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Rights size required to get consistent rebates
(max. of monthly avg event uses)
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An optimization example

x

x
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D
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Segment with optimal offers for

o’s and x’s:  4 customers inside

Segment with optimal offers for

’s:  3 customers insideD

Figure L.2: A simple example of the challenge of grouping 3 groups into two categories.
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“o” group, leaving the “∆” group separate.

• Walk along the budget balanced offer line once for each category.

• Sum the weighted value of the customers in the current category who are (weakly)

above and (weakly) to the left of each point on the budget-balanced offer line and

would thus get consistent offers if we made that offer to that category.

• Find the maximum point on the budget-balanced offer line by comparing the value at

the current point to the best performance achieved at any of the locations previously

visited.

• Add up the performance of the optimal offer to each category, getting the optimal

performance of the current categorization.

• Repeat this process for all the other possible categorizations, remembering the best

categorization seen so far and its performance.

In this simple example, the optimal solution is to combine the “x” group and the

“o” group into one category, leaving the group of ∆’s as a separate category. This solution

makes consistent offers to all seven customers. No other amalgamation of these three groups

into two or one categories can make consistent offers to more than 5 customers.

The algorithm that the paper uses a few additional insights about the nature of the

optimization problem to reduce the amount of computation required to find the solution.

It works as follows.

• Drop any customers for whom no consistent offers exist from the calculations.

• Identify all of the threshold points where a customer in the universe goes from having

a consistent offer to an inconsistent offer. Black squares and gray diamonds denote

these threshold points on the diagonal line of budget balanced offers in figure L.3.

These threshold points divide the continuum of budget balanced offers into a finite

set of line segments.1

1I assign threshold points to .25 kWh bins to reduce the number of line segments, which reduces the size
of the vectors listing the value of the objective function for each line segment, simplifying step iii below.
There are scenarios in which this approximation could cause very large changes in the location of the optimal
value and the percentage of customers reported as getting optimal offers. These scenarios require that many
customers get their minimal consistent offer very close to many other customers’ maximum abilities to pay
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Rights size required to get consistent rebates
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The algorithm constructs a vector that records the
weighted number of customers in getting consistent

offers in each segment of the budget-balanced offer line

=line segment endpoints defined by
customers from group g

Values of the vector within
each line segment

=line segment endpoints defined by
customers from other groups (who are not
shown).

Figure L.3: Calculating the vector listing the number of customers who get consistent offers
for each segment of the budget-balanced offer line.

• For each group, create a vector listing the weighted number of customers who would

get consistent offers for each budget-balanced-offer line segment.2 The algorithm

creates this vector by creating a list with an entry recording the location of each

threshold point and the change in the objective function there (i.e. the weighted total

number of customers who start getting consistent offers at the threshold minus the

customers who stop getting consistent offers at the threshold). It then sorts the list

by threshold value and creates the vector as the running sum of the changes in the

number of people getting consistent offers. The objective function is the sum of these

vectors.

• Try every possible categorization of groups into categories.3 The algorithm iterates

for their offer. These scenarios can only happen when the global maximum is not robust to real world noise
in customers’ energy use. The graphs of the objective function shapes in Chapter 3suggest that this is not
an important issue in this data set. It is straightforward to add code to the algorithm to flag any such
situations.

2The construction of the sixteen categories by preserving climate zones, but collapsing the apartments
and single family homes into unified high and low use customer bins means that customers within each group
g will have either an apartment (a) or a single family home (h) weight.

3We reduce the size of the problem by assuming, without loss of generality, that category 1 always
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over each possible assignment of the 16 groups to K categories and finds the optimal

arrangement as follows:

i. Increment the assignments of groups to categories. Typically, this will reassign

one group to a new category.4

ii. Use a branch and bound approach to determine whether the new configura-

tion might have outperformed the optimal configuration found so far, making it

worthwhile to run the computationally-intensive, optimum-calculation step iii.

The algorithm remembers the best performance achieved so far by any grouping

and the configuration’s performance the last time the configuration was fully

evaluated. It adds the the greatest possible benefits from all of the reconfigura-

tions that have taken place after the most recent computation to the performance

of the configuration most recently evaluated. Specifically, the upper bound on

the performance of the reconfigured categorization is that each reassigned group

vector will contribute its maximum benefits to its new category without taking

any benefits away from the category it left. Continue to reassign vectors (step i)

and update the best possible performance (step ii), only searching for the exact

optimal values (step iii if the upper bound on performance reports that the new

configuration could outperform the best performance seen so far.

iii. If this configuration might be a new optimum, calculate the maximum possible

performance. First, create category-level benefit vectors by adding each cat-

egory’s constituent group-vectors. Then search every entry in each category-

level vector to identify its maximal element. For example, if we have vectors

A = [0, 1], B = [1, 2], and C = [1, 0] and groups i = {A,B} and j = {C}, then

the category vectors are i = [1, 3] which yields optimal performance of 3 given

the offer corresponding to its second segment and j = [1, 0] which yields optimal

performance of 1 using its first offer.

contains group 1, that group 2 is either in category 1 or 2, and that group g is assigned to category c
only if g ≤ c. We can also require that group g > 1 be assigned to category c only if some other group
has been assigned to either c or c − 1. This assumption eliminates the need to spend computer time
evaluating redundant ways to write out the same categorization. A simple example illustrates this: consider
trying to assign groups A, B, and C to two nonempty categories. There are three unique categorizations:
(A,B), (C); (A), (B,C); (A,C), (B). Unless we assume that group A is in category 1, we can write each
unique categorization two ways by shuffling the numbers assigned to the underlying categories: numbering
scheme i (ii) has category 1 (2) =(A,B) and category 2 (1) = (C).

4This operation is directly akin to counting, and we sometimes reach cases that are analogous to that of
adding 001 to 099, which require “carrying” and requires changes to three categorizations.
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Appendix M

Performance of More Offers

Calculated Relative to the Total

Number of Feasible Customers in

the Group

Optimal 1 category offer

size class zone 1 zone 2 zone 3 zone 4

very low 0.0% 2.0% 16.2% 9.5%

low 13.9% 54.7% 71.9% 68.1%

high 84.1% 95.1% 67.5% 85.6%

very high 100.0% 84.5% 76.9% 55.7%

Optimal 2 category offer

size class zone 1 zone 2 zone 3 zone 4

very low 27.2% 55.2% 57.0% 58.7%

low 100.0% 98.0% 63.6% 57.6%

high 100.0% 85.4% 76.8% 86.0%

very high 91.3% 97.4% 89.7% 71.2%
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Optimal 4 category offer

size class zone 1 zone 2 zone 3 zone 4

very low 71.8% 74.5% 80.9% 86.5%

low 92.6% 88.6% 76.5% 76.5%

high 100.0% 90.2% 74.5% 96.4%

very high 100.0% 97.4% 94.9% 79.8%

Optimal 5 category offer

size class zone 1 zone 2 zone 3 zone 4

very low 71.8% 78.5% 81.4% 86.5%

low 100.0% 100.0% 76.5% 76.5%

high 100.0% 90.2% 74.5% 96.4%

very high 100.0% 97.4% 94.9% 79.8%

One offer for climate zones 1-2 and one for zones 3-4

size class zone 1 zone 2 zone 3 zone 4

very low 7.7% 20.2% 14.2% 8.7%

low 79.6% 92.5% 67.8% 68.1%

high 100.0% 87.8% 69.8% 89.2%

very high 91.3% 76.8% 79.5% 59.7%

One offer per climate zone

size class zone 1 zone 2 zone 3 zone 4

very low 21.4% 20.2% 16.2% 3.9%

low 100.0% 92.5% 71.9% 68.1%

high 100.0% 87.8% 67.5% 92.8%

very high 91.3% 76.8% 76.9% 67.8%
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Appendix N

Percentage of Customers Statewide

in each cell

Statewide Percent of Population in Cell
Climate zone Cells Single Family Homes Apartments
1 high / very high 2.3%

4.9%
1 low / very low 5.2%
2 high / very high 9.8%

15.2%
2 low / very low 22.3%
3 high / very high 8.2%

6.4%
3 low / very low 15.1%
4 high / very high 3.1%

2.1%
4 low / very low 5.2%

Table N.1: The percentage of customers statewide that each cell represents
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Appendix O

Notation

• Characteristics that vary by customer – like quantity consumed, Qi – appear in sans

serif.

• Rate characteritics like PL and miscellaneous entries appear in the math typeface.

Rate characteristics reflect local system costs and this document generally takes them

as given in designing an IP rebate system.

• Variables that IP rebate designers choose – most notably QD, R, and qR– appear in

bold.



www.manaraa.com

309

object source notation

basic objects

Price exogenous P

quantity per month varies Qi

quantity per critical or

baseline-setting peak

period

varies qi

time periods – sub-

scripts and sets

months exogenous m

set of months exogenous M

critical peak events –

e.g. use during an event

exogenous c, set is C

baseline setting pd exogenous b, B

rate of interest exogenous r

CPP

counts

number of critical

events, per year

exogenous rate design Nc

number of critical

events, this month

exogenous rate design Nm

number of days in base-

line setting period

exogenous Nb

rate period sub-

scripts

offpeak - low exogenous rate design L

peak - high exogenous rate design H

critical exogenous rate design c

time invariant, uniform exogenous rate design u



www.manaraa.com

310

what? source notation

IPR features

value of rights / credit IPR R

number of kWh per

event protected by

rights / credit

IPR qR

IPR rebate rate IPR PR
baseline-rebate rebate

rate

baseline-rebate PB

declining block markup IPR/exogenous M
number of kWh marked

up by the declining

block

IPR QD

bills Note that B abbreviates

baseline, not bill.

CPP Bill implication TCCPP

CPP-IPR Bill implication TCCPP−IPR

Customer Charac-

teristics

minimum monthly con-

sumption / ability to

buy a hedge, shorthand

for minm∈M{Qm}

customer level Qm

maximum consumption

during an event / hedge

need, shorthand for

maxm∈M{
∑

cinCM
qc

Nm
}

customer level q̄c

deficit / cumulative un-

dercontribution

customer level δm




